Abstract
The consistency problem of both mean field and variational Bayes estimators in the context of linear state space models is investigated. We prove that the mean field approximation is asymptotically consistent when the variances of the noise variables in the system are sufficiently small, but neither the mean field estimator nor the variational Bayes estimator is always asymptotically consistent as the ‘sample size’ becomes large. The ‘gap’ between the estimators and the true values is roughly estimated.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Attias, H.: Inferring parameters and structure of latent variable models by variational Bayes, in H. Prade and K. Laskey (eds.), Proc. 15th Conference on Uncertainty in Artificial Intelligence, pp. 21–30, Stockholm, Sweden, 1999.
Attias, H.: A variational Bayesian framework for graphical models, in S. Solla, T. Leen, and K.-R. Muller (eds), Advances in Neural Information Processing Systems 12, pp. 209–215, MIT Press: Cambridge, MA, 2000.
Beal, M. J.: Variational Algorithms for Approximate Bayesian Inference, PhD thesis, University College London, London, 2003.
Corduneanu, A. and Bishop, C. M.: Variational Bayesian model selection for mixture distributions, in T. Richardson and T. Jaakkola (eds.), Proceedings Eighth International Conference on Artificial Intelligence and Statistics, pp. 27-34, 2001.
da Fonseca, C. M. and Petronilho, J.: Explicit inverses of some tridiagonal matrices, Linear Algebra Appl. 325 (2001), 7–21.
Frey, B. J. and Hinton, G. E.: Variational learning in nonlinear Gaussian belief networks, Neural Comput. 11(1) (1999), 193–213.
Ghahramani, Z. and Beal, M. J.: Propagation algorithms for variational Bayesian learning, in T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems 13, pp. 507–513, MIT Press: Cambridge, MA, 2001.
Hall, P., Humphreys, K. and Titterington, D. M.: On the adequacy of variational lower bound functions for likelihood-based inference in Markovian models with missing values, J. Roy. Statisti. Soc. Ser. B 64 (2002), 549–564.
Humphreys, K. and Titterington, D. M.: Approximate Bayesian inference for simple mixtures, in J. G. Bethlehem and P. G. M. van der Heijden (eds.), COMPSTAT 2000, pp. 331–336, Physica-Verlag: Heidelberg 2000.
Jaakkola, T. S. and Jordan, M. I.: Bayesian logistic regression: a variational approach, Stat. Comput. 10 (2000), 25–37.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K.: An introduction to variational methods for graphical models, in M. I. Jordan (ed.), Learning in Graphical Models, pp. 105–162, MIT Press: Cambridge 1999.
Kappen, H. J. and Rodríguez F. B.: Efficient learning in Boltzmann machines using linear response theory, Neural Comput. 10 (1998), 1137–1156.
MacKay, D. J. C.: Ensemble learning for hidden Markov models, Technical Report, Cavendish Laboratory, University of Cambridge, 1997.
Opper, M. and Winther, O.: From naive mean field theory to the TAP equations, in M. Opper and D. Saad (eds.), Advanced Mean Field Methods, pp. 7–20, The MIT Press: Cambridge, MA, 2001.
Penny, W. D. and Roberts, S. J.: Variational Bayes for 1-dimensional mixture models, Technical Report PARG-2000-01, Oxford University, 2000.
Peterson, C. and Anderson, J. R.: A mean field learning algorithm for neural networks, Complex Systems, 1(5) (1987), 995–1019.
Saul, L. K., Jaakkola, T. and Jordan, M. I.: Mean field theory of sigmoid belief networks, J. Artif. Intelli. Res., 4 (1996), 61–76.
Wang, B. and Titterington, D. M.: Local convergence of variational Bayes estimators for mixing coefficients, Technical Report 03-4, University of Glasgow. http://www.stats.gla.ac.uk/Research/TechRep2003/03-4.pdf, 2003.
Whittaker, J.: Graphical Models in Applied Multivariate Statistics, John Wiley: Chichester 1990.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wang, B., Titterington, D.M. Lack of Consistency of Mean Field and Variational Bayes Approximations for State Space Models. Neural Processing Letters 20, 151–170 (2004). https://doi.org/10.1007/s11063-004-2024-6
Issue Date:
DOI: https://doi.org/10.1007/s11063-004-2024-6