Skip to main content
Log in

Constructive Approximation of Discontinuous Functions by Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we give a constructive proof that a real, piecewise continuous function can be almost uniformly approximated by single hidden-layer feedforward neural networks (SLFNNs). The construction procedure avoids the Gibbs phenomenon. Computer experiments show that the resulting approximant is much more accurate than SLFNNs trained by gradient descent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burton RM, Dehling HG (1998) Universal approximation in p-mean by neural networks. Neural Netw 11: 661–667

    Article  Google Scholar 

  2. Cai W, Gottlieb D, Shu CW (1989) Esentially nonoscillatory spectral Fourier methods for schock wave calculations. Math Comput 52: 389–410

    Article  MATH  MathSciNet  Google Scholar 

  3. Candes E, Donoho D (1999) Ridgelets: a key to higher dimensional intermittency?. Philos Trans R Soc Lond Ser A 357: 2495–2509

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Candes E, Donoho D (1999) Curvelets: a surprisingly effective nonadaptive representation of objects with edges. Technical Report, Department of Statistics, Stanford University

  5. Claypole P, Davis G, Sweldens W, Baraniuk R (2003) Nonlinear wavelet transforms for image coding via lifting. IEEE Trans Image Process 12: 1449–1459

    Article  MathSciNet  ADS  Google Scholar 

  6. Colzani L, Vignati M (1995) The Gibbs phenomenon for multiple Fourier integrals. J Approx Theory 80: 1–43

    Article  MathSciNet  Google Scholar 

  7. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2: 207–220

    Article  MathSciNet  Google Scholar 

  8. Donoho D (1995) De-noising by soft tresholding. IEEE Trans Inform Theory 41: 613–627

    Article  MATH  MathSciNet  Google Scholar 

  9. Donoho D (1997) Wedgelets. Nearly-minimax estimation of edges. Technical Report, Department of Statistics, Stanford University

  10. Driscoll TA, Fornberg B (2001) A Padé based algorithm for overcoming the Gibbs phenomenon. Numer Algorithms 26: 77–92

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Foster J, Richards FB (1991) The Gibbs phenomenon for piecewise-linear approximation. Am Math Mon 98: 47–49

    Article  MATH  MathSciNet  Google Scholar 

  12. Foster J, Richards FB (1995) Gibbs-Wilbraham splines. Constr Approx 11: 37–52

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedman A (1982) Foundations of modern analysis. Dover, New York

    MATH  Google Scholar 

  14. Fukai T (1995) A model cortical circuit for the storage of temporal sequences. Biol Cybern 72: 321–328

    Article  MATH  Google Scholar 

  15. Gelb A, Tadmor E (1999) Detection of edges in spectral data. Appl Comput Harmon Anal 7: 101–135

    Article  MATH  MathSciNet  Google Scholar 

  16. Gibbs J (1899) Fourier series. Nature (letter to the editor). 59:606

  17. Gottlieb D, Shu ChW (1997) On the Gibbs phenomenon and its resolution. SIAM Rev 39: 644–668

    Article  MATH  MathSciNet  Google Scholar 

  18. Helmberg G (1999) A corner point Gibbs phenomenon for Fourier series in two dimensions. J Approx Theory 100: 1–43

    Article  MATH  MathSciNet  Google Scholar 

  19. Hesthaven JS, Kaber SM, Lurati L (2006) Padé Legendre interpolants for Gibbs reconstruction. J Sci Comput 28: 337–359

    Article  MATH  MathSciNet  Google Scholar 

  20. Hewitt E, Stromberg K (1965) Real and abstract analysis. Springer Verlag, Berlin

    MATH  Google Scholar 

  21. Jerri AJ (1998) The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations. Kluwer, Dordrecht

    MATH  Google Scholar 

  22. Kelly SE (1996) Gibbs phenomenon for wavelets. Appl Comput Harmon Anal 3: 72–81

    Article  MATH  MathSciNet  Google Scholar 

  23. Llanas B, Sainz FJ (2006) Constructive approximate interpolation by neural networks. J Comput Appl Math 188: 283–308

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Mallat S (1989) Multiresolution approximations and wavelet othonormal bases of \({L^{2}(\mathbb{R})}\). Trans Am Math Soc 315: 69–87

    Article  MATH  MathSciNet  Google Scholar 

  25. Pinkus A (1999) Approximation theory of the MLP model in neural networks. Acta Numer 143–195

  26. Rasmussen HO (1993) The wavelet Gibbs phenomenon. In: Farge M, Hunt JCR, Vassilicos JC (eds) Wavelets, fractals and Fourier transforms. Clarendon Press, Oxford

    Google Scholar 

  27. Selmic RR, Lewis FL (2000) Neural network approximation of piecewise continuous functions: Application to friction compensation. In: Sinha NK, Gupta MM (eds) Soft computing & intelligent systems: theory & applications. Academic Press, London

    Google Scholar 

  28. Selmic RR, Lewis FL (2000) Deadzone compensation in motion control systems using neural networks. IEEE Trans Automat Contr 45: 602–613

    Article  MATH  MathSciNet  Google Scholar 

  29. Selmic RR, Lewis FL (2002) Neural network approximation of piecewise continuous functions. Application to friction compensation. IEEE Trans Neural Netw 13: 745–751

    Google Scholar 

  30. Shim HT, Volkmer H, Walter GG (2007) Gibbs’ phenomenon in higher dimensions. J Approx Theory 145: 20–32

    Article  MATH  MathSciNet  Google Scholar 

  31. Wei M, Martínez AG, De Pierro AR (2007) Detection of edges from spectral data: new results. Appl Comput Harmon Anal 22: 386–393

    Article  MATH  MathSciNet  Google Scholar 

  32. Weyl H (1910) Die Gibbsche erscheinung in der theorie der Kugelfunktionen. Rend Circ Mat Palermo 29: 308–323

    Article  MATH  Google Scholar 

  33. White H, Hornik K, Stinchcombe M (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359–366

    Article  Google Scholar 

  34. Wilbraham H (1848) On a certain periodic function. Cambridge Dublin Math J 3: 198–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Llanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanas, B., Lantarón, S. & Sáinz, F.J. Constructive Approximation of Discontinuous Functions by Neural Networks. Neural Process Lett 27, 209–226 (2008). https://doi.org/10.1007/s11063-007-9070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-007-9070-9

Keywords

Navigation