Abstract
This paper proposes a novel locality preserving projections (LPP) algorithm for image recognition, namely, the direct locality preserving projections (DLPP), which directly optimizes locality preserving criterion on high-dimensional raw images data via simultaneous diagonalization, without any dimensionality reduction preprocessing. Our algorithm is a direct and complete implementation of LPP. Experimental results on the PolyU palmprint database and ORL face database show the effectiveness of the proposed algorithm.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1): 71–86
Belhumeur P, Hespanha J, Kriegman D (2001) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7): 711–720
He X, Yan S, Hu Y, Niyogi P, Zhang H-J (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3): 328–340
Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2): 228–233
Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2323–2326
Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319–2323
Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Proc Adv Neural Inf Process Syst 14: 585–591
He X, Niyogi P (2003) Locality preserving projections, Available at: http://books.nips.cc/papers/files/nips16/NIPS2003_AA20.pdf
He X, Yan S, Hu Y, Zhang H-J (2003) Learning a locality preserving subspace for visual recognition. In: Proceedings of International Conference on Computer Vision, pp. 385–392
Schölkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5): 1299–1319
Yang J, Frangi AF, Yang JY, Zhang D, Jin Z (2005) Kernel PCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and representation. IEEE Trans Pattern Anal Mach Intell 27(2): 230–
Yang J, Gao X, Zhang D, Yang JY (2005) Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recogn 38(10): 1784–1787
Feng G, Hu D, Zhang D, Zhou Z (2006) An alternative formulation of kernel LPP with application to image recognition. Neurocomputing 69(13–15): 1733–1768
Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data – with application to face recognition. Pattern Recognit 34(10): 2067–2070
The PolyU palmprint database. Available at: http://www.comp.polyu.edu.hk/biometrics/
The ORL face database. Available at: http://www.cam_orl.co.uk/facedatabase.html
Zhang D, Kong WK, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Intell 25(9): 1041–1050
Lu G, Zhang D, Wang K (2003) Palmprint recognition using eigenpalms features. Pattern Recogn Lett 24(9–10): 1463–1467
Wu X, Zhang D, Wang K (2003) Fisherpalms based palmprint recognition. Pattern Recogn Lett 24(15): 2829–2838
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feng, G., Hu, D. & Zhou, Z. A Direct Locality Preserving Projections (DLPP) Algorithm for Image Recognition. Neural Process Lett 27, 247–255 (2008). https://doi.org/10.1007/s11063-008-9073-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-008-9073-1