Skip to main content

Advertisement

Log in

Energy Supervised Relevance Neural Gas for Feature Ranking

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In pattern classification, input pattern features usually contribute differently, in accordance to their relevances for a specific classification task. In a previous paper, we have introduced the Energy Supervised Relevance Neural Gas classifier, a kernel method which uses the maximization of Onicescu’s informational energy for computing the relevances of input features. Relevances were used to improve classification accuracy. In our present work, we focus on the feature ranking capability of this approach. We compare our algorithm to standard feature ranking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESRNG:

Energy Supervised Relevance Neural Gas

References

  1. Andonie R, Caţaron A (2004) An informational energy LVQ approach for feature ranking. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2004), Bruges, Belgium, pp 471–476

  2. Andonie R, Caţaron A (2005) Feature ranking using supervised neural gas and informational energy. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2005), Montreal, Canada, July 31–August 4, pp 1269–1273

  3. Andonie R, Petrescu F (1986) Interacting systems and informational energy. Found Control Eng 11: 53–59

    MATH  MathSciNet  Google Scholar 

  4. Asuncion A, Newman DJ (2007) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. Available: http://mlearn.ics.uci.edu/MLRepository.html, 2007

  5. Battiti R. (1994) Using mutual information for selecting features in supervised neural network training. IEEE Trans Neural Netw 5: 537–550

    Article  Google Scholar 

  6. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  7. Breiman L (1996) Bias, variance and arcing classifiers. Tec. Report 460, Statistics department, University of California, April 1996

  8. Bojer T, Hammer B, Schunk D, von Toschanowitz KT (2001) Relevance determination in learning vector quantization. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2001), Bruges, Belgium, pp 271–276

  9. Bottou L, Cun YL (2004) Large scale online learning. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16. MIT Press, Cambridge, MA

    Google Scholar 

  10. Cang S, Partridge D (2004) Feature ranking and best subset using mutual information. Neural Comput Appl 13: 175–184

    Article  Google Scholar 

  11. Caţaron A, Andonie R (2004) Energy generalized LVQ with relevance factors. In: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN 2004, Budapest, Hungary

  12. Caţaron A, Andonie R (2005) Informational energy kernel for LVQ. In: Dutch W et al (eds) ICANN 2005, Lecture Notes in Computer Science, vol 3697. Springer-Verlag, Berlin, pp 601-606

  13. Chow TWS, Huang D (2005) Estimating optimal feature subsets using efficient estimation of high- dimensional mutual information. IEEE Trans Neural Netw 16: 213–224

    Article  Google Scholar 

  14. Duch W, Wieczorek T, Biesiada J, Blachnik M (2004) Comparison of feature ranking methods based on information entropy. In: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN 2004, Budapest, Hungary, pp 1415–1419

  15. Duda RO, Hart PE, Stork DG (2001) Pattern classification. John Wiley and Sons Inc., New York

    MATH  Google Scholar 

  16. Estévez PA, Tesmer M, Perez CA, Zurada JM. Normalized mutual information feature selection. IEEE Trans Neural Netw 20:189–201

  17. Fu X, Wang L (2003) Data reduction dimensionality with application to simplifying RBF network structure and improving classification performance. IEEE Trans Syst Man Cybern B Cybern 3: 399–409

    Google Scholar 

  18. Furlanello C, Serafini M, Merler S, Jurman G (2003) An accelerated procedure for recursive feature ranking on microarray data. Neural Netw 16: 641–648

    Article  Google Scholar 

  19. García-Laencina PJ, Sancho-Gómez J-L, Figueiras-Vidal AR, Verleysen M (2008) K-nearest neighbours based on mutual information for incomplete data classification. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2008), Bruges, Belgium, pp 37–42

  20. Gómez-Verdejo V, Verleysen M, Fleury J (2009) Information-theoretic feature selection for functional data classification. Neurocomputing 72: 3580–3589

    Article  Google Scholar 

  21. Guiaşu S (1977) Information theory with applications. McGraw Hill, New York

    MATH  Google Scholar 

  22. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157–1182

    Article  MATH  Google Scholar 

  23. Hammer B, Villmann T (2002) Generalized relevance learning vector quantization. Neural Netw 15: 1059–1068

    Article  Google Scholar 

  24. Hammer B, Strickert M, Villmann T (2005) Supervised neural gas with general similarity measure. Neural Process Lett 21(1): 21–44

    Article  Google Scholar 

  25. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the 9th international conference on machine learning. Morgan Kaufmann, pp 249–256

  26. Kohonen T (2000) Self-organizing maps. Springer-Verlag, Berlin

    Google Scholar 

  27. Lehn-Schiøler T, Hegde A, Erdogmus D, Principe JC (2005) Vector quantization using information theoretic concepts. Nat Comput Int J 4: 39–51

    Article  Google Scholar 

  28. Liu, H, Motoda, H (eds) (2008) Computational methods of feature selection. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  29. Martinetz TM, Berkovich SG, Schulten SG (1993) Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4: 558–569

    Article  Google Scholar 

  30. Onicescu O (1966) Theorie de l’information. Energie informationelle. C R Acad Sci Paris Ser A-B 263: 841–842

    MATH  MathSciNet  Google Scholar 

  31. Principe JC, Xu D, Fisher JW III (2000) Information-theoretic learning. In: Haykin S (eds) Unsupervised adaptive filtering. Wiley, New York

    Google Scholar 

  32. Purcaru I (1987) Considerations on the definition of a good measure of unilateral dependence. Stud Cerc Mat 39: 56–59

    MATH  MathSciNet  Google Scholar 

  33. Schneider P, Biehl M, Hammer B (2007) Relevance matrices in LVQ. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2007), Bruges, Belgium, pp 37–42

  34. Sun Y (2007) Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Trans Pattern Anal Mach Intell 29: 1035–1051

    Article  Google Scholar 

  35. Tesmer M, Estevez PA (2004) AMIFS: adaptive feature selection by using mutual information. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2004), Budapest, Hungary, 25–29 July, 2004

  36. Torkkola K (2002) On feature extraction by mutual information maximization. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Orlando, FL

  37. Torkkola K (2003) Feature extraction by non parametric mutual information maximization. J Mach Learn Res 3: 1415–1438

    Article  MATH  MathSciNet  Google Scholar 

  38. van der Lubbe JCA, Boxma Y, Bockee DE (1984) A generalized class of certainty and information measures. Inf Sci 32: 187–215

    Article  MATH  Google Scholar 

  39. Verleysen M, Rossi F, Franois D (2009) Advances in feature selection with mutual information, In: Biel M et al (eds) Similarity-based clustering. Lecture Notes in Artificial Intelligence, vol 5400. Springer, Berlin, pp 52–69

  40. Wei HL, Billings SA (2007) Feature subset selection and ranking for data dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29: 162–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Caţaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caţaron, A., Andonie, R. Energy Supervised Relevance Neural Gas for Feature Ranking. Neural Process Lett 32, 59–73 (2010). https://doi.org/10.1007/s11063-010-9143-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9143-z

Keywords

Navigation