Skip to main content
Log in

Stochastic Processes and Neuronal Modelling: Quantum Harmonic Oscillator Dynamics in Neural Structures

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper studies neural structures with weights that follow the model of the quantum harmonic oscillator (Q.H.O.). The proposed neural networks have stochastic weights which are calculated from the solution of Schrödinger’s equation under the assumption of a parabolic (harmonic) potential. These weights correspond to diffusing particles, which interact to each other as the theory of Brownian motion (Wiener process) predicts. The learning of the stochastic weights (convergence of the diffusing particles to an equilibrium) is analyzed. In the case of associative memories the proposed neural model results in an exponential increase of patterns storage capacity (number of attractors). Finally, it is shown that conventional neural networks and learning algorithms based on error gradient can be conceived as a subset of the proposed quantum neural structures. Thus, the complementarity between classical and quantum physics is also validated in the field of neural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rigatos GG, Tzafestas SG (2008) Attractors and energy spectrum of neural structures based on the model of the quantum harmonic oscillator. In: Nitta T (eds) Complex-valued neural networks: utilizing high-dimensional parameters. IGI Publications, Hershey

    Google Scholar 

  2. Harisson LM, David K, Friston KJ (2005) Stochastic models of neuronal dynamics. Philos Trans R Soc B 360: 1075–1091

    Article  Google Scholar 

  3. Hagan S, Hameroff SR, Tuzyinski JA (2002) Quantum Computation in brain microtubules: decoherence and biological feasibility. Phys Rev E Am Phys Soc 65: 1–11

    Google Scholar 

  4. Behrman EC, Nash LR, Steck JE, Chandrashekar VG, Skinner SR (2002) Simulations of quantum neural networks. Inf Sci Elsevier 128: 257–269

    MathSciNet  Google Scholar 

  5. Deutsch D (1989) Quantum computational networks. Proc R Soc Lond A 425: 73

    Article  MATH  MathSciNet  Google Scholar 

  6. Feynman R (1986) Quantum mechanical computers. Found Phys 16: 507–531

    Article  MathSciNet  Google Scholar 

  7. Perus M (2001) Multi-level Synergetic Computation in Brain. Nonlin Phenom Complex Syst 4(2): 157–193

    MathSciNet  Google Scholar 

  8. Mahler G, Weberuss VA (1998) Quantum networks: dynamics of open nanostructures. Springer, Berlin

    Google Scholar 

  9. Müller G (1998) Quantum mechanics: symmetries, 2nd edn. Springer, Berlin

    Google Scholar 

  10. Cohen-Tannoudji C, Diu B, Laloë F (1998) Mécanique Quantique I. Hermann, Paris

  11. Nielsen M, Chuang A (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Perus M (2000) Neural networks as a basis for quantum associative networks. Neural Netw World 10: 1001–1013

    Google Scholar 

  13. Perus M, Bischof H, Caulfield J, Loo CK (2004) Quantum implementable selective reconstruction of high resolution images. Appl Opt 43: 6134–6138

    Article  Google Scholar 

  14. Alfinito E, Vitiello G (2000) Formation and life-time of memory domains in the dissipative quantum model of the brain. Int J Mod Phys B 14: 853–868

    Google Scholar 

  15. Resconi G, van der Wal AJ (2002) Morphogenic neural networks encode abstract rules by data. Inf Sci Elsevier 142: 249–273

    MATH  Google Scholar 

  16. Soong TT, Grigoriou M (1992) Random vibration of mechanical and structural systems. Prentice Hall, New York

    Google Scholar 

  17. Gitterman M (2005) The noisy oscillator: the first hundred years, from Einstein until now. World Scientific, Singapore

    Book  MATH  Google Scholar 

  18. Refregier A, Shapelets I (2003) A method for image analysis. Mon Not R Astron Soc 338: 35–47

    Article  Google Scholar 

  19. Rigatos GG, Tzafestas SG (2006) Neural structures using the eigenstates of the quantum harmonic oscillator. Open Syst Inf Dyn 13: 27–41

    Article  MATH  MathSciNet  Google Scholar 

  20. Ventura D, Martinez T (2000) Quantum associative memory. Inf Sci 124: 273–296

    Article  MathSciNet  Google Scholar 

  21. Rigatos GG, Tzafestas SG (2007) Neurodynamics and attractors in quantum associative memories. J Integr Comput Aided Eng 14(3): 225–242

    MathSciNet  Google Scholar 

  22. Rigatos GG (2007) Quantum wave-packets in fuzzy automata and neural associative memories. Int J Mod Phys C 18(10): 1551–1569

    Article  MATH  MathSciNet  Google Scholar 

  23. Rigatos GG, Tzafestas SG (2002) Parallelization of a fuzzy control algorithm using quantum computation. IEEE Trans Fuzzy Syst 10: 451–460

    Article  Google Scholar 

  24. Rigatos GG, Tzafestas SG (2006) Quantum learning for neural associative memories. Fuzzy Sets Syst 157(13): 1797–1813

    Article  MATH  MathSciNet  Google Scholar 

  25. Faris WG (2006) Diffusion, quantum theory, and radically elementary mathematics. Princeton University Press, Princeton

    MATH  Google Scholar 

  26. Duflo M (1996) Algorithmes stochastiques, Mathématiques et Applications, vol 23. Springer, Berlin

    Google Scholar 

  27. Benvensite A, Metivier P, Priouret P (1990) Adaptive algorithms and stochastic approximations. Applications of mathematics series, vol 22. Springer, Berlin

  28. Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and applications. Prentice-Hall, Upper Saddle River

    Google Scholar 

  29. Tzafestas SG, Rigatos GG (1999) A simple robust sliding-mode fuzzy-logic controller of the diagonal type. J Intell Robot Syst 26: 353–388

    Article  Google Scholar 

  30. Tzafestas SG, Rigatos GG (2000) Stability analysis of an adaptive fuzzy control system using Petri Nets and learning automata. Math Comput Simul 51(3): 315–341

    Article  MathSciNet  Google Scholar 

  31. Rigatos GG (2002) Fuzzy stochastic automata for reactive learning and hybrid control. Lecture notes in artificial intelligence, vol 2308. Springer, Berlin, pp 366–377

  32. Iwasaki I, Nakasima H, Shimizu T (1998) Interacting Brownian particles as a model of neural network. Int J Bifurc Chaos 8(4): 791–797

    Article  MATH  Google Scholar 

  33. Rigatos GG (2008) Coordinated motion of autonomous vehicles with the use of a distributed gradient algorithm. Appl Math Comput 199(2): 494–503

    Article  MATH  MathSciNet  Google Scholar 

  34. Rigatos GG (2005) Distributed gradient for multi-robot motion planning. In: ICINCO05, 2nd international conference on Informatics in control, automation and robotics, Barcelona, Spain, September 2005

  35. Khalil H (1996) Nonlinear systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Gazi V, Passino K (2004) Stability analysis of social foraging swarms. IEEE Trans Syst Man Cybernet B 34(1): 539–557

    Article  Google Scholar 

  37. Passino K (2007) Distributed task assignment for mobile agents. IEEE Trans Autom Control 52(4): 749–753

    Article  MathSciNet  Google Scholar 

  38. Levine H, Rappel WJ (2000) Self-organization in systems of self-propelled particles. Phys Rev E 63: 17101

    Article  Google Scholar 

  39. Hopfield JJ (1982) Neural networks as physical systems with emergent computational abilities. Proc Natl Acad Sci USA 79: 2444–2558

    Article  MathSciNet  Google Scholar 

  40. Haykin S (1994) Neural networks: a comprehensive foundation. McMillan, New York

    MATH  Google Scholar 

  41. Aiyer S, Niranjan M, Fallside F (1990) Theoretical investigation into the performance of the Hopfield model. IEEE Trans Neural Netw 15(1): 204–215

    Article  Google Scholar 

  42. Deco G, Rolls ET, Romo R (2009) Stochastic dynamics as a principle of brain function. Prog Neurobiol 88: 1–16

    Article  Google Scholar 

  43. Jackson BS (2004) Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of the cortical neurons. Neural Comput 16: 2125–2195

    Article  MATH  Google Scholar 

  44. Chumbley JR, Dolan RJ, Friston KJ (2008) Attractor models of working memory and their modulation by reward. Biol Cybernet 98: 11–18

    Article  MATH  Google Scholar 

  45. Rolls ET, Loh M, Deco G (2008) An attractor hypothesis of obsessive compulsive disorder. Eur J Neurosci 28(4): 782–793

    Article  Google Scholar 

  46. Loh M, Rolls ET, Deco G (2007) Statistical fluctuation in attractor networks related to Schizophrenia. Pharmacopsychiatry 40: 78–84

    Article  Google Scholar 

  47. Loh M, Rolls ET, Deco G (2007) A dynamical systems hypothesis of Schizophrenia. PLOS Comput Biol 3(11): 1–11

    Article  MathSciNet  Google Scholar 

  48. Deco G, Rolls ET (2005) Attention, short-memory and action selection: a unifying theory. Prog Neurobiol 76: 236–256

    Google Scholar 

  49. Deco G, Marti D, Ledberg A, Reig R, Sanchez Vives MV (2009) Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. PLOS Comput Biol 5(12): e1000587

    Article  Google Scholar 

  50. Kosko B (1992) Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  51. Mirrahimi M, Rouchon P (2004) Controllability of quantum harmonic oscillators. IEEE Trans Autom Control 45(5): 745–747

    Article  MathSciNet  Google Scholar 

  52. Spencer RG (2001) Bipolar spectral associative memories. IEEE Trans Neural Netw 12: 463–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigatos, G.G. Stochastic Processes and Neuronal Modelling: Quantum Harmonic Oscillator Dynamics in Neural Structures. Neural Process Lett 32, 167–199 (2010). https://doi.org/10.1007/s11063-010-9151-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9151-z

Keywords

Navigation