Skip to main content
Log in

Sparse RBF Networks with Multi-kernels

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

While the conventional standard radial basis function (RBF) networks are based on a single kernel, in practice, it is often desirable to base the networks on combinations of multiple kernels. In this paper, a multi-kernel function is introduced by combining several kernel functions linearly. A novel RBF network with the multi-kernel is constructed to obtain a parsimonious and flexible regression model. The unknown centres of the multi-kernels are determined by an improved k-means clustering algorithm. And orthogonal least squares (OLS) algorithm is used to determine the remaining parameters. The complexity of the newly proposed algorithm is also analyzed. It is demonstrated that the new network can lead to a more parsimonious model with much better generalization property compared with the traditional RBF networks with a single kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach FR, Lanckriet GR, Jordan I (2004) Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st international conference on machine learning

  2. Billings SA, Chen S (1998) The determination of multivariable nonlinear models for dynamic systems using neural networks. In: Leondes CT (ed) Neural network systems techniques and applications. Academic Press, San Diego

    Google Scholar 

  3. Billings SA, Wei HL, Balikhin M (2007) Generalized multiscale radial basis function networks. Neural Netw 20: 1081–1094

    Article  Google Scholar 

  4. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2: 321–355

    MathSciNet  MATH  Google Scholar 

  5. Chen S (2006) Local regularization assisted orthogonal least regression. Neurocomputing 69: 559–585

    Article  Google Scholar 

  6. Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50(5): 1873–1896

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen S, Cowan CF, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis networks. IEEE Trans Neural Netw 2(2): 302–309

    Article  Google Scholar 

  8. Chen S, Hong X, Harris CJ, Sharkey PM (2004) Sparse modeling using orthogonal forward regression with PRESS statistic and regulation. IEEE Trans Syst Man Cybern 34(2): 898–911

    Article  Google Scholar 

  9. Chen S, Wang XX, Harris CJ (2005) Experiments with repeating weighted boosting search for optimization in signal processing applications. IEEE Trans Syst Man Cybern B Cybern 35(4): 682–693

    Article  Google Scholar 

  10. Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez J, Diaz AF (2003) Multiobjective evolutionary optimization of the size, shape and position parameters of radial basis function networks for function approximation. IEEE Trans Neural Netw 14(6): 1478–1495

    Article  Google Scholar 

  11. Hong X, Harris CJ (2003) Experimental design and model construction algorithms for radial basis function networks. Int J Syst Sci 34(14): 733–745

    Article  MATH  Google Scholar 

  12. Huang YS, Bang SY (1997) An efficient method to construct a radial basis function neural network classifier. Neural Netw 10(8): 1495–1503

    Article  Google Scholar 

  13. Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16(1): 57–67

    Article  Google Scholar 

  14. Jing XY, Yao YF, Yang JY, Zhang D (2008) A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network. Neurocomputing 71(13–15): 3044–3048

    Article  Google Scholar 

  15. Karayiannis NB (1999) Reformulated radial basis neural networks trained by gradient descent. IEEE Trans Neural Netw 10(3): 657–671

    Article  Google Scholar 

  16. Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44(1): 23–34

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar R, Das RR, Mishra VN, Dwivedi R (2009) A radial basis function neural network classifier for the discrimination of individual odor using responses of thick-film tin-oxide sensors. IEEE Sens J 9(10): 1254–1261

    Article  Google Scholar 

  18. Lazaro M, Santamaria I, Pataleon C (2003) A new EM-based training algorithm for RBF networks. Neural Netw 16(1): 69–77

    Article  Google Scholar 

  19. Leontaritis IJ, Billings SA (1985) Input–output parametric models for non-linear systems—part I: deterministic non-linear systems. Int J Control 41(2): 303–328

    Article  MathSciNet  MATH  Google Scholar 

  20. Liaw HC, Shirinzadeh B, Smith J (2009) Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation. IEEE Trans Neural Netw 20(2): 356–367

    Article  Google Scholar 

  21. Musavi MT, Ahmed W, Chan KH, Faris KB, Hummels DM (1992) On the training of radial basis function classifiers. Neural Netw 5(4): 595–603

    Article  Google Scholar 

  22. Park J, Sandberg IW (1993) Approximation and radial basis function networks. Neural Comput 5(2): 305–316

    Article  Google Scholar 

  23. Poggio T, Edelman S (1990) A network that learns to recognize three dimensional objects. Nature 343: 263–266

    Article  Google Scholar 

  24. Poggio T, Girosi FM (1990) Networks for approximation and learning. Proc IEEE 18(9): 1481–1497

    Article  Google Scholar 

  25. Schwenker F, Kestler HA, Palm G (2001) Three learning phase for radial-basis-function networks. Neural Netw 14(4): 439–458

    Article  Google Scholar 

  26. Smola A (1996) Regression estimation with support vector learning machines. Master’s Thesis, Technische University Műnchen

  27. Smola A, Scholkopf B, Ratsch G (1999) Linear programs for automatic accuracy control in regression. In: Proceedings of the 9th international conference on artificial neural networks

  28. Sonnenburg S, Rätsch G, Schafer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7: 1531–1565

    MathSciNet  Google Scholar 

  29. Wu Q, Ying Y, Zhou DX (2007) Multi-kernel regularized classifiers. J Complex 23: 108–134

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybern B Cybern 34(1): 34–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, L., Zhang, M. & Li, H. Sparse RBF Networks with Multi-kernels. Neural Process Lett 32, 235–247 (2010). https://doi.org/10.1007/s11063-010-9153-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9153-x

Keywords

Navigation