Skip to main content
Log in

Blind Source Separation Using Quadratic form Innovation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Blind source separation (BSS) is an increasingly popular data analysis technique with many applications. Several methods for BSS using the statistical properties of original sources have been proposed, for a famous one, such as non-Gaussianity, which leads to independent component analysis (ICA). This paper proposes a blind source separation method based on a novel statistical property: the quadratic form innovation of original sources, which includes linear predictability and energy (square) predictability as special cases. A gradient learning algorithm is presented by minimizing a loss function of the quadratic form innovation. Also, we give the stability analysis of the proposed BSS algorithm. Simulations verify the efficient implementation of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amari SI, Cichocki A, Yang H (1996) A new learning algorithm for blind source separation. In: Advances in neural information processing systems, vol 8. MIT Press, Cambridge, pp. 757–763

  2. Barros AK, Cichocki A (2001) Extraction of specific signals with temporal structure. Neural Comput 13(9): 1995–2003

    Article  MATH  Google Scholar 

  3. Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6): 1129–1159

    Article  Google Scholar 

  4. Belouchrani A, Meraim KA, Cardoso J-F, Moulines E (1997) A blind source separation technique based on second order statistics. IEEE Trans Signal Process 45(2): 434–444

    Article  Google Scholar 

  5. Cardoso J-F (1994) On the performance of orthogonal source separation algorithms. In: Proceedings of the EUSIPCO, Edinburgh, pp 776–779

  6. Cardoso J-F, Laheld BH (1996) Equivariant adaptive source separation. IEEE Trans Signal Process 44(12): 3017–3030

    Article  Google Scholar 

  7. Cichocki A, Amari S-I (2002) Adaptive blind signal and image processing: learning algorithms and applications. Wiley, New York

    Book  Google Scholar 

  8. Comon P (1994) Independent component analysis—a new concept?. Signal Process 36: 287–314

    Article  MATH  Google Scholar 

  9. Delfosse N, Loubaton P (1995) Adaptive blind separation of independent sources: a deflation approach. Signal Process 45: 59–83

    Article  MATH  Google Scholar 

  10. Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3): 626–634

    Article  Google Scholar 

  11. Hyvärinen A (2001) Complexity pursuit: separating interesting components from time-series. Neural Comput 13(4): 883–898

    Article  MATH  Google Scholar 

  12. Hyvärinen A (2001) Blind source separation by nonstationarity of variance: a cumulant-based approach. IEEE Trans Neural Netw 12(6): 1471–1474

    Article  Google Scholar 

  13. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  14. Jutten C, Herault J (1991) Blind separation of sources, part I: an adaptive algoritnm based on neuromimetic architecture. Signal Process 24: 1–10

    Article  MATH  Google Scholar 

  15. Lee T-W, Girolami M, Sejnowski T (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2): 417–441

    Article  Google Scholar 

  16. Liu W, Mandic DP, Cichocki A (2006) Blind second-order source extraction of instantaneous noisy mixtures. IEEE Trans Circuits Syst II 53(9): 931–935

    Article  Google Scholar 

  17. Liu W, Mandic DP, Cichocki A (2007) Blind source extraction based on a linear predictor. IET Signal Process 1(1): 29–34

    Article  Google Scholar 

  18. Matsuoka K, Ohya M, Kawamoto M (1995) A neural net for blind separation of nonstationary signals. Neural Netw 8(3): 411–419

    Article  Google Scholar 

  19. Molgedey L, Schuster HG (1994) Separation of a mixture of independent signals using time delayed correlations. Phys Rev Lett 72(23): 3634–3637

    Article  Google Scholar 

  20. Pham D-T, Cardoso J-F (2001) Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans Signal Process 49(9): 1837–1848

    Article  MathSciNet  Google Scholar 

  21. Shi Z, Zhang C (2006) Gaussian moments for noisy complexity pursuit. Neurocomputing 69(7-9): 917–921

    Article  Google Scholar 

  22. Shi Z, Zhang C (2006) Energy predictability to blind source separation. Electron Lett 42(17): 1006–1008

    Article  Google Scholar 

  23. Shi Z, Zhang C (2007) Semi-blind source extraction for fetal electrocardiogram extraction by combining non-Gaussianity and time-correlation. Neurocomputing 70: 1574–1581

    Article  Google Scholar 

  24. Shi Z, Zhang C (2007) Nonlinear innovation to blind source separation. Neurocomputing 71: 406–410

    Article  Google Scholar 

  25. Shi Z, Tang H, Tang Y (2005) A fast fixed-point algorithm for complexity pursuit. Neurocomputing 64: 529–536

    Article  Google Scholar 

  26. Stone JV (2001) Blind source separation using temporal predictability. Neural Comput 13: 1559–1574

    Article  MATH  Google Scholar 

  27. Tong L, Liu R-W, Soon V, Huang Y-F (1991) Indeterminacy and identifiability of blind identification. IEEE Trans Circuits Syst 38(5): 499–509

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwei Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Zhang, H., Tan, X. et al. Blind Source Separation Using Quadratic form Innovation. Neural Process Lett 33, 83–97 (2011). https://doi.org/10.1007/s11063-010-9165-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9165-6

Keywords