Skip to main content
Log in

Feature Extraction Using Laplacian Maximum Margin Criterion

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Feature extraction by Maximum Margin Criterion (MMC) can more efficiently calculate the discriminant vectors than LDA, by avoiding calculation of the inverse within-class scatter matrix. But MMC ignores the local structures of samples. In this paper, we develop a novel criterion to address this issue, namely Laplacian Maximum Margin Criterion (Laplacian MMC). We define the total Laplacian matrix, within-class Laplacian matrix and between-class Laplacian matrix by using the similar weight of samples to capture the scatter information. Laplacian MMC based feature extraction gets the discriminant vectors by maximizing the difference between between-class laplacian matrix and within-class laplacian matrix. Experiments on FERET and AR face databases show that Laplacian MMC works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain AK, Chandrasekaran B (1982) Dimension and sample size consideration in pattern recognition practice. In Handbook of statistic. North-Holland, Amsterdam

  2. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  3. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: ECCV, Heraklion

  4. Yang M, Zhang L, Zhang D, Yang J (2010) Metaface learning for sparse representation based face recognition. In: ICIP

  5. Zhang L, Yang M, Feng Z, Zhang D (2010) On the dimensionality reduction for sparse representation based face recognition. In: ICPR

  6. Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3): 252–264

    Article  Google Scholar 

  7. Swets DL, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8): 831–836

    Article  Google Scholar 

  8. Belhumeur V, Hespanha J, Kriegman D (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7): 711–720

    Article  Google Scholar 

  9. Yang J, Yang JY (2003) Why can LDA be performed in PCA transformed space?. Pattern Recognit 36(2): 563–566

    Article  Google Scholar 

  10. Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit 24(4): 317–324

    Article  MathSciNet  Google Scholar 

  11. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84: 165–175

    Article  Google Scholar 

  12. Hastie T, Tibshirani R (1995) Penalized discriminant analysis. Ann Stat 23: 73–102

    Article  MATH  MathSciNet  Google Scholar 

  13. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89: 1255–1270

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen LF, Liao HYM, Ko MT, Yu GJ (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33(1): 1713–1726

    Article  Google Scholar 

  15. Yu H, Yang J (2001) A direct LDA algorithm for high dimensional data—with application to face recognition. Pattern Recognit 34(10): 2067–2070

    Article  MATH  Google Scholar 

  16. Gao QX, Zhang L, Zhang D (2008) Face recognition using FLDA with single training image per-person. Appl Math Comput 205(12): 726–734

    Article  MATH  Google Scholar 

  17. Zhuang XS, Dai DQ (2007) Improved discriminant analysis for high-dimensional data and its application to face recognition. Pattern Recognit 40(5): 1570–1578

    Article  MATH  Google Scholar 

  18. Jin Z, Yang JY, Hu Z, Lou Z (2001) Face recognition based on the uncorrelated discrimination transformation. Patter Recognit 34(7): 1405–1416

    Article  MATH  Google Scholar 

  19. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1): 1157–1165

    Article  Google Scholar 

  20. Zhang B, Chen X, Shan S, Gao W (2005) Nonlinear face recognition based on maximum average margin. In: CVPR, vol 1, pp 554–559

  21. Zheng W, Zou C, Zhao L (2005) Weighted maximum margin discriminant analysis with kernels. Neurocomputing 67: 357–363

    Article  Google Scholar 

  22. Yan J, Zhang B, Yan S et al (2004) IMMC: incremental maximum margin criterion. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining

  23. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319–2323

    Article  Google Scholar 

  24. Roweis ST, Saul LK (2000) Nonlinear dimension reduction by locally linear embdedding. Science 290: 2323–2326

    Article  Google Scholar 

  25. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6): 1373–1396

    Article  MATH  Google Scholar 

  26. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3): 328–340

    Article  Google Scholar 

  27. Yang J, Zhang D, Yang JY, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4): 650–664

    Article  Google Scholar 

  28. Yan S, Xu D, Zhang B, Zhang H-J (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1): 40–51

    Article  MathSciNet  Google Scholar 

  29. Chen HT, Chang HW, Liu TL (2005) Local discriminant embedding and its variants. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), vol 2, pp 846–853

  30. Wang F, Zhang CS (2007) Feature extraction by maximizing the average neighborhood margin. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–8

  31. Zhao DL, Liu ZC, Xiao R, Tang XO (2007) Linear laplacian discrimination for feature extraction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–7

  32. Yu WW, Teng XL, Liu CQ (2006) Face recognitin using discriminant locality preserving projection. Image Vis Comput 24: 239–248

    Article  Google Scholar 

  33. Yang WK, Wang JG, Ren M, Yang JY (2008) Feature extraction based on local maximum margin criterion. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–4

  34. Xian-da Z (2004) Matrix analysis and application (in Chinese). Tsinghua University Press, Beijing

    Google Scholar 

  35. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10): 1090–1104

    Article  Google Scholar 

  36. Phillips PJ (2004) The facial recognition technology (FERET) database. http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

  37. Martinez AM, Benavente R The AR face database. http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html

  38. Martinez AM, Benavente R (1998) The AR face database. CVC technical report #24, June

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankou Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Sun, C., Du, H.S. et al. Feature Extraction Using Laplacian Maximum Margin Criterion. Neural Process Lett 33, 99–110 (2011). https://doi.org/10.1007/s11063-010-9167-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9167-4

Keywords

Navigation