Skip to main content
Log in

Discriminant Kernel Learning Using Hybrid Regularization

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Kernel discriminant analysis (KDA) is one of the state-of-the-art kernel-based methods for pattern classification and dimensionality reduction. It performs linear discriminant analysis in the feature space via kernel function. However, the performance of KDA greatly depends on the selection of the optimal kernel for the learning task of interest. In this paper, we propose a novel algorithm termed as elastic multiple kernel discriminant analysis (EMKDA) by using hybrid regularization for automatically learning kernels over a linear combination of pre-specified kernel functions. EMKDA makes use of a mixing norm regularization function to compromise the sparsity and non-sparsity of the kernel weights. A semi-infinite program based algorithm is then proposed to solve EMKDA. Extensive experiments on synthetic datasets, UCI benchmark datasets, digit and terrain database are conducted to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge Mass

    Google Scholar 

  2. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297

    MATH  Google Scholar 

  4. Vapnik VN (1998) Statistical learning theory. Wiley, New York

  5. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10: 1299–1319

    Article  Google Scholar 

  6. Mika S, Ratsch G, Weston J, Scholkopf B, Mullers K (1999) Fisher discriminant analysis with kernels. In: Proceedings of IEEE workshop on neural networks for signal processing, Madison, WI

  7. Yang J, Jin Z, Zhang D, Frangi AF (2004) Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognit 37: 2097–2100

    Article  Google Scholar 

  8. Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5: 27–72

    MATH  Google Scholar 

  9. Bach FR, Lanckriet GRG, Jordan MI (2004) Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceeding ICML ’04 Proceedings of the twenty-first international conference on Machine learning, ACM New York, NY

  10. Sonnenburg S, Rätsch G, Schäfer C, Schälkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7: 1531–1565

    MathSciNet  MATH  Google Scholar 

  11. Kloft M, Brefeld U, Laskov P, Sonnenburg S (2008) Non-sparse multiple kernel learning. NIPS workshop on kernel learning: automatic selection of optimal kernels, Whistler

  12. Kloft M, Brefeld U, Sonnenburg S, Laskov P, Müller KR, Zien A (2009) Efficient and accurate lp-norm multiple kernel learning. Adv Neural Inf Proc Syst 22: 997–1005

    Google Scholar 

  13. Yang H, Xu Z, Ye J, King I, Lyu MR (2011) Efficient sparse generalized multiple kernel learning. IEEE Trans Neural Netw 22: 433–446

    Article  Google Scholar 

  14. Fu L, Zhang M, Li H (2010) Sparse RBF networks with multi-kernels. Neural Proc Lett 32: 235–247

    Article  Google Scholar 

  15. Yang J, Frangi AF, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27: 230–244

    Article  Google Scholar 

  16. Xu Y, Zhang D, Jin Z, Li M, Yang JY (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognit 39: 1026–1033

    Article  MATH  Google Scholar 

  17. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York, NY

    MATH  Google Scholar 

  18. Fung G, Dundar M, Bi J, Rao B (2004) A fast iterative algorithm for fisher discriminant using heterogeneous kernels. In: Proceedings of the 21st international conference on machine learning, Banff

  19. Mika S, Ratsch G, Muller KR (2001) A mathematical programming approach to the kernel fisher algorithm. Advances in neural information processing systems 591–597

  20. Kim SJ, Magnani A, Boyd S (2006) Optimal kernel selection in kernel fisher discriminant analysis, in Proceedings of ICML

  21. Ye J, Ji S, Chen J (2008) Multi-class discriminant kernel learning via convex programming. J Mach Learn Res 9: 719–758

    MathSciNet  MATH  Google Scholar 

  22. Khemchandani R (2010) Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. Eur J Operational Res 203: 692–697

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang Z, Li Y (2010) Multiple kernels for generalised discriminant analysis. IET Comput Vision 4: 117–128

    Article  MathSciNet  Google Scholar 

  24. Lin YY, Liu TL, Fuh CS (2011) Multiple kernel learning for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 33: 1147–1160

    Article  Google Scholar 

  25. Yan F, Kittler J, Mikolajczyk K, Tahir A (2009) Non-sparse multiple kernel learning for fisher discriminant analysis. In: Proceedings of ICDM, Miami, FL, pp 1064–1069

  26. Yan F, Mikolajczyk K, Barnard M, Cai H, Kittler J (2010) Lp norm multiple kernel Fisher discriminant analysis for object and image categorisation. In: Proceedings of CVPR, San Francisco, CA, pp 3626–3632

  27. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc 67: 301–320

    Article  MathSciNet  MATH  Google Scholar 

  28. Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev 35: 380–429

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun D, Zhang D (2009) A new discriminant principal component analysis method with partial supervision. Neural Proc Lett 30: 103–112

    Article  Google Scholar 

  30. Chen X, Yang J, Liang J (2011) Optimal locality regularized least squares support vector machine via alternating optimization. Neural Proc Lett 33: 301–315

    Article  Google Scholar 

  31. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24: 971–987

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Chen, L. & Chen, X. Discriminant Kernel Learning Using Hybrid Regularization. Neural Process Lett 36, 257–273 (2012). https://doi.org/10.1007/s11063-012-9234-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9234-0

Keywords

Navigation