Abstract
In this paper, a new technique is presented to measure dissimilarity in kernel space providing scaling and translation invariance. The motivation comes from signal/image processing, where classifiers are often required to ensure invariance against linear transforms, since in many cases linear transforms do not affect the content of a signal/image for a human observer. We examine the theoretical background of linear invariance in the polynomial kernel space, introduce the centered correlation and centered Euclidean dissimilarity in kernel space, deduce formulas to compute it efficiently and test the proposed dissimilarity measures with the kNN classifier. The experimental results show that the presented techniques are highly competitive in similarity or dissimilarity based classification methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Irvine
Blazadonakis ME, Zervakis M (2007) Polynomial and RBF kernels as marker selection tools—a breast cancer case study. In: Fourth international conference on machine learning and applications, pp 488–493. http://doi.ieeecomputersociety.org/10.1109/ICMLA.2007.67
Cai R, Hao Z, Wen W, Huang H (2010) Kernel based gene expression pattern discovery and its application on cancer classification. Neurocomputing 73:2562–2570. doi:10.1016/j.neucom.2010.05.019
Camastra F (2006) Kernel methods for clustering. In: WIRN/NAIS, Lecture Notes in Computer Science vol 3931, pp 1–9
Daze MM, Daze E (2009) Encyclopedia of distances. Springer, New York
Denton A, Perrizo WA (2004) Kernel-based semi-naïve Bayesian classifier using p-trees. In: SDM’04, pp 427–431
Evans M, Hastings N, Peacock B (2000) Statistical distributions. Wiley-Interscience. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471371246
Graepel T (1998) Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21(1–3):173–190. doi:10.1016/S0925-2312(98)00035-6
Herbrich R (2001) Learning Kernel classifiers: theory and algorithms (adaptive computation and machine learning). The MIT Press. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026208306X
Hofmann T, Scholkopf B, Smola AJ (2008) Kernel methods in machine learning. http://arxiv.org/abs/math.ST/0701907
Jadhav D, Kulkarni J, Holambe R (2008) Multiresolution feature based fractional power polynomial kernel fisher discriminant model for face recognition. J Multimedia 3(1). http://ojs.academypublisher.com/index.php/jmm/article/view/03014753
Kulkarni SR, Lugosi G, Venkatesh SS (1998) Learning pattern classification—a survey. IEEE Trans Inf Theory 44:2178–2206
Lampert CH (2009) Kernel methods in computer vision. Found Trends Comput Graph Vis 4:193–285. doi:10.1561/0600000027. http://portal.acm.org/citation.cfm?id=1640474.1640475
Minh HQ (2006) Reproducing kernel Hilbert spaces in learning theory. Dissertation, Brown University
Minh H, Niyogi P, Yao Y (2006) Mercers theorem, feature maps, and smoothing. In: Lugosi G, Simon H (eds) Learning theory. Lecture notes in computer science, vol 4005. Springer, Berlin, pp 154–168
Nehe NS, Holambe RS (2009) Isolated word recognition using low dimensional features and kernel based classification. In: ARTCom, pp 194–198
Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MSA, Abramoff MD (2005) Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 24(5): 584–592
Niemeijer M, van Ginneken B, Cree MJ, Mizutani A, Quellec G, Sanchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X, Cazuguel G, You J, Mayo A, Li Q, Hatanaka Y, Cochener B, Roux C, Karray F, Garcia M, Fujita H, Abramoff MD (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195. http://www.biomedsearch.com/nih/Retinopathy-Online-Challenge-Automatic-Detection/19822469.html
Scholkopf B (2000) The Kernel trick for distances. In: NIPS, pp 301–307. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.327
Scholkopf B, Smola AJ (2001) Learning with Kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge
Schlkopf B, Smola AJ, Müller KR (1999) Kernel principal component analysis. Advances in kernel methods: support vector learning, pp 327–352. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3580
Takeda H, Milanfar P (2010) Nonlinear kernel backprojection for computed tomography. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, ICASSP 2010, 14–19 March 2010, Sheraton Dallas Hotel, Dallas, TX, USA, pp 618–621. IEEE. doi:10.1109/ICASSP.2010.5495184
Vapnik VN (1998) Statistical learning theory. Wiley-Interscience. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471030031
Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algorithm. Neural Process Lett 15:147–156. doi:10.1023/A:1015244902967
Zhao G, Pietikzinen M (2006) Local binary pattern descriptors for dynamic texture recognition. In: Proceedings of the international conference on pattern recognition, pp 211–214
Zhou J, Liu Y, Chen Y (2007) Face recognition using kernel PCA and hierarchical RBF network. In: Proceedings of the 6th international conference on computer information systems and industrial management applications. IEEE Computer Society, Washington, DC, pp 239–244. doi:10.1109/CISIM.2007.28. http://portal.acm.org/citation.cfm?id=1270379.1270523
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kovács, G., Hajdu, A. Translation Invariance in the Polynomial Kernel Space and Its Applications in kNN Classification. Neural Process Lett 37, 207–233 (2013). https://doi.org/10.1007/s11063-012-9242-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-012-9242-0