Skip to main content
Log in

Associative Learning of Integrate-and-Fire Neurons with Memristor-Based Synapses

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A memrsitor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. In this paper, we present a class of memristor-based neural circuits comprising leaky integrate-and-fire (I & F) neurons and memristor-based learning synapses. Employing these neuron circuits and corresponding SPICE models, the properties of a two neurons network are shown to be similar to biology. During correlated spiking of the pre- and post-synaptic neurons, the strength of the synaptic connection increases. Conversely, it is diminished when the spiking is uncorrelated. This synaptic plasticity and associative learning is essential for performing useful computation and adaptation in large scale artificial neural networks. Finally, future circuit design and consideration are discussed with the memristor-based neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jo S, Chang T, Ebong I, Bhadviya B, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

  2. Smith L (2006) Handbook of nature-inspired and innovative computing: integrating classical models with emerging technologies. Springer, New York

    Google Scholar 

  3. Ananthanarayanan R, Eser S, Simon H, Modha D (2009) In: Proceedings of IEEE/ACM conference high performance networking computing. Portland, OR, November 2009

  4. Izhikevich E, Edelman G (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA 105:3593–3598

    Article  Google Scholar 

  5. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike? timing dependent plasticity. IEEE Trans Neural Netw 17:211–221

    Article  Google Scholar 

  6. (1999) The scientific American book of the brain. Scientifc American, New York.

  7. Chua L, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  8. Chua L, yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst II 35:1273–1290

    Article  MathSciNet  Google Scholar 

  9. Wen S, Zeng Z (2012) Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli. Neural Process Lett 35:47–59

    Article  Google Scholar 

  10. He H, Yan L, Tu J (2012) Guaranteed stabilization of time-varying delay cellular neural networks via Riccati inequality approach. Neural Process Lett 35:151–158

    Article  Google Scholar 

  11. Su T, Huang M, Hou C (2010) Cellular neural networks for gray image noise cancellation based on a hybrid linear matrix inequaltiy and particle swarm optimization approach. Neural Process Lett 32:147–165

    Article  Google Scholar 

  12. Sang Y, Yi Z, Zhou J (2010) Spatial point-data reduction using pulse coupled neural network. Neural Process Lett 32:11–29

    Article  Google Scholar 

  13. Balasubramaniam P, Vembarasan V, Rakkiyappan R (2011) Leakage delays in T-S fuzzy cellular neural networks. Neural Process Lett 33:111–136

    Article  Google Scholar 

  14. Li H, Liao X, Li C, Huang H, Li C (2011) Edge detection of noisy images based on cellular neural networks. Commun Nonlinear Sci Numer Simul 16:3746–3759

    Article  MathSciNet  MATH  Google Scholar 

  15. Li H, Liao X, Liao R (2012) A unified approach to chaos suppressing and inducing in a periodically forced family of nonlinear oscillators. IEEE Trans Circuits Syst I 59:784–795

    Article  MathSciNet  Google Scholar 

  16. He X, Li C, Shu Y (2012) Bogdanov-Takens bifurcation in a single inertial neuron model with delay. Neurocomput 89(15):193–201

    Article  Google Scholar 

  17. He X, Li C, Huang T, Li C (2013) Codimension two bifurcation in a delayed neural network with unidirectional coupling. Nonlinear anal RWA 14(2):1191–1202

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang H, Song Q, Duan C (2010) LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions. Mathemat Comput Simul 81(4):837–850

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang H, Song Q (2010) State estimation for neural networks with mixed interval time-varying delays. Neurocomputer 73(7):1281–1288

    Article  Google Scholar 

  20. Li C, Li C, Huang T (2011) Exponential stability of impulsive high-order Hopfield-type neural networks with delays and reaction-diffusion. Int J Comput Math 88(15):3150–3162

    Article  MathSciNet  MATH  Google Scholar 

  21. Li C, Li C, Liao X, Huang T (2011) Impulsive effects on stability of high-order BAM neural networks with time delays. Neurocomputer 74(10):1541–1550

    Article  Google Scholar 

  22. Huang T, Li C, Duan S et al (2012) Robust exponential stability of uncertain delayed neural networks With stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23:866–875

    Article  Google Scholar 

  23. Li C, Wu S, Feng G, Liao X (2011) Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans Neural Netw 22:323–329

    Article  Google Scholar 

  24. Li C, Feng G (2008) Stabilizing effects of impulse in delayed BAM neural networks. IEEE Trans Circuits Syst II 55:1284–1288

    Article  Google Scholar 

  25. Li H, Gao H, Shi H (2010) Passivity analysis for neural networks with discrete and distributed delays. IEEE Trans Neural Netw 22:1842–1847

    Google Scholar 

  26. Li H, Chen B, Zhou Q, Qian W (2009) Robust stability for uncertain delayed fuzzy hopfield neural networks with markovian jumping parameters. IEEE Trans Syst Man Cybern B Cybern 39:94–102

    Article  Google Scholar 

  27. Roska T, Chua L (1993) The CNN universal machine: an analogic array computer. IEEE Trans Circuits Syst II 40:163–172

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng C, Zhang H, Wang Z (2010) Improved robust stability criteria for delayed cellular neural networks via the LMI approach. IEEE Trans Circuits Syst II Expr Briefs 57:41–45

    Article  Google Scholar 

  29. Kim H, Pd Sah M, Yang C, Roska T, Chua L (2011) Neural synaptic weighting with a pulse-based memritor circuit. IEEE Trans Circuits Syst I 59:148–158

    Article  Google Scholar 

  30. Strukov D, Snider G, Stewart D, Williams R (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  31. Chua L (1971) Memristor-The missing circuit element. IEEE Trans Circuits Theory 18:507–519

    Article  Google Scholar 

  32. Liu S, Douglas R (2004) Temporal coding in a silicon network of integrate-and-fire neurons. IEEE Trans Neural Netw 15:1305–1314

    Article  Google Scholar 

  33. Chicca E, Badoni D, Dante V, D’Andreagiovanni M, Salina G, Fusi S, Del Giudice P (2003) A VLSI recurrent network of integrate-and fire neurons connected by plastic synapses with long term memory. IEEE Trans Neural Netw 14:1297–1307

    Article  Google Scholar 

  34. Choi T, Shi B, Boahen K (2004) An on-off orientation selective address event representation image transceiver chip. IEEE Trans Circuits Syst I 51:342–353

    Article  Google Scholar 

  35. Indiveri G (2001) A neuromorphic VLSI device for implementing 2-D selective attention systems. IEEE Trans Neural Netw 12:1455–1463

    Article  Google Scholar 

  36. Di Ventra M, Pershin Y, Chua L (2009) Circuit elements with memory: memristor, memcapacitors and meminductors. Proc IEEE 97:1717–1724

    Article  Google Scholar 

  37. Cantley K, Subramaniam A, Stiegler H, Chapman P, Vogel E (2011) Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapse. IEEE Trans Nanotechnol 10:1066–1073

    Article  Google Scholar 

  38. Cantley K, Subramaniam A, Stiegler H, Chapman P, Vogel E (2012) Neural learning circuits utilizing nano-crystalline silicon transistors and memristors. IEEE Trans Neural Netw Learn Syst 23:565–573

    Article  Google Scholar 

  39. Snider G (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18:1–13

    Google Scholar 

  40. Sah M, Yang C, Kim H, Chua L (2012) A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors 12:3587–3604

    Article  Google Scholar 

  41. Kim H, Sah M, Yang C, Cho S, Chua L (2012) Memristor bridge synapses. Proc IEEE. doi:10.1109/jproc.2011.2166749

  42. Linares-Barranco B, Serrano-Gotarredona T (2009) Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems. In 9th IEEE Conference on Nanotechnology, Genoa, Italy, 601–604

  43. Di Pershin Y, Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23:881–886

    Article  Google Scholar 

  44. Xia Q, Robinett W, Cumbie M, Banerjee N, Cardinali T, Yang J, Wu W, Li X, Tong W, Strukov D, Snider G, Medeiros-Ribeiro G, Williams R (2009) Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett 9:3640–3645

    Article  Google Scholar 

  45. Wang X, Chen Y, Xi H, Li H, Dimitrov D (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294–297

    Article  Google Scholar 

  46. Yang J, Picket M, Li X, Ohlberg A, Stewart D, Williams R (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol 3:429–433

    Article  Google Scholar 

  47. Ho Y, Huang G, Li P (2011) Dyanmical properties and design analysis for nonvolatile memristor memories. IEEE Trans Circuits Syst I 58:724–736

    Article  MathSciNet  Google Scholar 

  48. Joglekar Y, Wolf S (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30:661–675

    Article  MATH  Google Scholar 

  49. Pickett M, Strukov D, Borghetti J, Yang J, Snider G, Williams R (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106:074508–074508-6

    Article  Google Scholar 

  50. Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, Reading

    Book  MATH  Google Scholar 

  51. Diorio C, Hasler P, Minch B, Mead C (1996) A single-transistor silicon synapse. IEEE Trans Electron Devices 43:1972–1980

    Article  Google Scholar 

  52. Chua L, Kang S (1976) Memristive devices and systems. Proc IEEE 64:209–223

    Article  MathSciNet  Google Scholar 

  53. Chen L, Li C, Wang X, Duan S (2012) Associate learning and correcting in a memristive neural network. Neural Comput Appl. doi:10.1007/s00521-012-0868-7

Download references

Acknowledgments

The work is supported by the Natural Science Foundation of China under Grant 60974021, the 973 Program of China under Grant 2011CB710606, the Fund for Distinguished Young Scholars of Hubei Province under Grant 2010CDA081, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant 20100142110021, National Priority Research Project NPRP 4-451-2-168, funded by Qatar National Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, S., Zeng, Z. & Huang, T. Associative Learning of Integrate-and-Fire Neurons with Memristor-Based Synapses. Neural Process Lett 38, 69–80 (2013). https://doi.org/10.1007/s11063-012-9263-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9263-8

Keywords

Navigation