Skip to main content
Log in

Error Estimate for Spherical Neural Networks Interpolation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

We present a type of spherical neural network (SNN) with bounded sigmoidal activation function and study its interpolation capability. We find that the provided SNN can exactly interpolate the training samples. Furthermore, based on the special structure of the presented SNN, we can bound the interpolation error by the modulus of smoothness of the target function, which is different from the previous results on the spherical scattered data interpolation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassiou GA (2012) Univariate sigmoidal neural network approximation. J Comput Anal Appl 14:659–690

    MathSciNet  MATH  Google Scholar 

  2. Barron AR (1993) Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inf Theory 39:930–945

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen DB (1993) Degree of approximation by superpsitions of a sigmoidal function. Approx Theory Its Appl 9:17–28

    Google Scholar 

  4. Chen ZX, Cao FL (2009) The approximation operators with sigmoidal functions. Comput Math Appl 58:758–765

    Article  MathSciNet  Google Scholar 

  5. Costarelli D, Spigler R (2013) Constructive approximation by superposition of sigmidal functions. Anal Theory Appl 29:169–196

    MathSciNet  MATH  Google Scholar 

  6. Costarelli D, Spigler R (2013) Approximation results for neural network opertors activated by sigmoidal functions. Neural Netw 44:101–106

    Article  Google Scholar 

  7. Costarelli D, Spigler R (2013) Multivariate neural network operators with sigmoidal activation functions. Neural Netw 48:72–77

    Article  Google Scholar 

  8. Cybenko G (1989) Approximation by superpositions of sigmoidal function. Math Control Signals Syst 2:303–314

    Article  MathSciNet  Google Scholar 

  9. Ditzian Z (1999) A modulus of smoothness on the unit sphere. J d’Anal Math 79:189–200

    Article  MathSciNet  Google Scholar 

  10. Fasshauer GE, Schumaker LL (1998) Scattered data fitting on the sphere. In: Dælen M, Lyche T, Schumaker LL (eds) Mathematical methods for curves and surfaces II. Vanderbilt University Press, Nashville, TN, pp 117–166

  11. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Oxford University Press, New York

    Google Scholar 

  12. Golitschek M, Light W (2001) Interpolation by polynomials and radial basis functions on spheres. Constr Approx 17:1–18

    Article  MathSciNet  MATH  Google Scholar 

  13. Hahm N, Hong B (2002) Approximation order to a function in \(\overline{C}(\mathbf{R})\) by superposition of a sigmoidal function. Appl Math Lett 15:591–597

    Article  MathSciNet  MATH  Google Scholar 

  14. Jetter K, Stökler J, Ward J (1999) Error estimates for scattered data interpolation on spheres. Math Comput 68:733–749

    Article  MATH  Google Scholar 

  15. Lascaux P, Theodor T (1986) Analyse Numerique Matricielle Apliquée a l’Art de l’Ingenieur. Masson, Paris

    MATH  Google Scholar 

  16. Lenze B (1992) Constructive multivariate approximation with sigmoidal functions and applications to neural networks, Numerical Methods of Approximation Theory. Birkhauser Verlag, Basel

    MATH  Google Scholar 

  17. Levesley J, Sun X (2005) Approximation in rough native spaces by shifts of smooth kernels on spheres. J Approx Theory 133:269–283

    Article  MathSciNet  Google Scholar 

  18. Lewicki G, Marino G (2003) Approximation by superpositions of a sigmoidal function. J Anal Its Appl 22:463–470

    MathSciNet  Google Scholar 

  19. Lin SB, Cao FL, Xu ZB (2011) Essential rate for approximation by spherical neural networks. Neural Netw 24:752–758

    Article  Google Scholar 

  20. Lin SB, Cao FL, Chang XY, Xu ZB (2012) A general radial quasi-interpolation operator on the sphere. J Approx Theory 164:1402–1414

    Article  MathSciNet  MATH  Google Scholar 

  21. Llanas B, Sainz FJ (2006) Constructive approximate interpolation by nerual networks. J Comput Appl Math 188:283–308

    Article  MathSciNet  Google Scholar 

  22. Narcowich FJ, Ward JD (2002) Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J Math Anal 33:1393–1410

    Article  MathSciNet  Google Scholar 

  23. Narcowich FJ, Sun XP, Ward JD, Wendland H (2007) Direct and inverse sobolev error estimates forscattered data interpolation via spherical basis functions. Found Comput Math 369–370

  24. Sloan I, Womersley R (2000) Constructive polynomial approximation on the sphere. J Approx Theory 103:91–118

    Article  MathSciNet  Google Scholar 

  25. Sun XP, Cheney EW (1997) Fundamental sets of continuous functions on spheres. Constr Approx 13:245–250

    Article  MathSciNet  Google Scholar 

  26. Wendland H (2005) Scattered data approximation. In: Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

  27. Womersley R, Sloan I (2001) How good can polynomial interpolation on the sphere be? Adv Comput Math 14:195–226

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Lin.

Additional information

The research was supported by the National 973 Programming (2013CB329404), and the Key Program of National Natural Science Foundation of China (Grant No. 11131006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Zeng, J. & Xu, Z. Error Estimate for Spherical Neural Networks Interpolation. Neural Process Lett 42, 369–379 (2015). https://doi.org/10.1007/s11063-014-9361-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9361-x

Keywords

Mathematics Subject Classification (2000)

Navigation