Skip to main content
Log in

Neural Control for Driving a Mobile Robot Integrating Stereo Vision Feedback

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper proposes a neural control integrating stereo vision feedback for driving a mobile robot. The proposed approach consists in synthesizing a suitable inverse optimal control to avoid solving the Hamilton Jacobi Bellman equation associated to nonlinear system optimal control. The mobile robot dynamics is approximated by an identifier using a discrete-time recurrent high order neural network, trained with an extended Kalman filter algorithm. The desired trajectory of the robot is computed during navigation using a stereo camera sensor. Simulation and experimental result are presented to illustrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Viñuela PI, Galvan IM (2004) Redes de neuronas Artificiales Un Enfoque Prctico. Pearson, Prentice Hall, Madrid

    Google Scholar 

  2. Talebi HA, Abdollahi F, Patel RV, Khorasani K (2010) Neural network-based state estimation of nonlinear systems. Springer, New York

    Book  MATH  Google Scholar 

  3. Sanchez EN, Ricalde LJ (2003) In: Proceedings of the international joint conference on neural networks, vol 1, Portland, pp. 359–364. doi:10.1109/IJCNN.2003.1223372

  4. Kirk DE (2004) Optimal control theory: an introduction, Dover Publications. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0486434842

  5. Krstic M, Kokotovic PV, Kanellakopoulos I (1995) Nonlinear and adaptive control design, 1st edn. Wiley, New York

    MATH  Google Scholar 

  6. Do K, Jiang Z, Pan J (2004) Universal controllers for stabilization and tracking of underactuated ships. IEEE Transactions on Automatic Control 49(7):1147. doi:10.1109/TAC.2004.831139

    Article  MathSciNet  MATH  Google Scholar 

  7. Feldkamp LA, Prokhorov DV, Feldkamp TM (2003) Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks. Neural Netw 16(5–6):683. doi:10.1016/S0893-6080(03)00127-8

    Article  Google Scholar 

  8. Park BS, Yoo SJ, Park JB, Choi YH (2010) Studies in systems, decision and control. IEEE Trans Control Syst Technol 18(5):1199

    Article  Google Scholar 

  9. Salome A, Alanis AY, Sanchez EN (2011) In: 8th international conference on electrical engineering computing science and automatic control (CCE), pp 1–6. doi:10.1109/ICEEE.2011.6106564

  10. Fierro R, Lewis F (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw 9(4):589. doi:10.1109/72.701173

    Article  Google Scholar 

  11. Jiang ZP, Nijmeijer H (1999) A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans Autom Control 44(2):265. doi:10.1109/9.746253

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumbla K, Jamshidi M (1997) In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1118–1123. doi:10.1109/ROBOT.1997.614286

  13. Raghavan V, Jamshidi M (2007) In: IEEE international conference on system of systems engineering, SoSE ’07, pp 1–6. doi:10.1109/SYSOSE.2007.4304295

  14. Yang JM, Kim JH (1999) Variable structure control of non-holonomic wheeled of nonholonomic wheeled mobile robots. IEEE Trans Robot Autom 15(3):578. doi:10.1109/70.768190

    Article  MathSciNet  Google Scholar 

  15. Holland J (2003) Designing autonomous mobile robots: inside the mind of an intelligent machine. Newnes, Matlock Bath

    Google Scholar 

  16. Sanchez EN, García AYA, Loukianov AG (2008) Discrete-time high order neural control: trained with Kalman filtering, vol 112. Springer, New York

    MATH  Google Scholar 

  17. Rovithakis GA, Chistodoulou MA (2000) Adaptive control with recurrent high-order neural networks. Springer, Berlin

    Book  Google Scholar 

  18. Williams R, Zipser D (1989) Stable indirect adaptive control with recurrent neural networks (RNN). Neural Comput 1(2):270. doi:10.1162/neco.1989.1.2.270

    Article  Google Scholar 

  19. Leung CS, Chan LW (2003) Dual extended Kalman filtering in recurrent neural networks. Neural Networks 16(2), 223. doi:10.1016/S0893-6080(02)00230-7. http://www.sciencedirect.com/science/article/pii/S0893608002002307

  20. Grover R, Hwang PYC (1992) Introduction to random signals and applied Kalman filtering. Wiley, New York

    MATH  Google Scholar 

  21. Song Y, Sun Z, Liao X, Zhang R (2006) In: 1st IEEE conference on industrial electronics and applications, pp 1–6. doi:10.1109/ICIEA.2006.257071

  22. Alanis AY, Lopez-Franco M, Arana-Daniel N, Lopez-Franco C (2012) A new visual servo controller based on geometric algebra. Int J Adapt Control Signal Process 26(7):630. doi:10.1002/acs.2289

    Article  MathSciNet  Google Scholar 

  23. Sanchez EN, Ornelas-Tellez F (2013) Discrete-time inverse optimal control for nonlinear systems. CRC Press, Boca Raton

    MATH  Google Scholar 

  24. Lewis FL, Syrmos VL (1995) Optimal control, 1st edn. Wiley, New York

    Google Scholar 

  25. Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  26. Al-Tamimi A, Lewis F, Abu-Khalaf M (2008) Discrete-time control algorithms and adaptive intelligent systems. IEEE Trans Man Cybernet Part B 38(4):943. doi:10.1109/TSMCB.2008.926614

    Article  MATH  Google Scholar 

  27. Ohsawa T, Bloch A, Leok M (2010) In: 49th IEEE conference on decision and control (CDC), pp 5438–5443. doi:10.1109/CDC.2010.5717665

  28. Chaumette F, Hutchinson S (2006) Visual servo control. I. Basic approaches. IEEE Robot Autom Mag 13(4):82

    Article  Google Scholar 

  29. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  30. Gonzalez RC, Woods RE, Eddins SL (2003) Digital image processing using MATLAB. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  31. Feng L, Milios EE (1994) In: Proceedings CVPR ’94, 1994 IEEE computer society conference on computer vision and pattern recognition, pp 935–938. doi:10.1109/CVPR.1994.323928

  32. Canudas de Wit C, Siciliano B, Bastian G (1997) Theory of robot control. Springer, London

    Google Scholar 

  33. Das T, Kar I (2006) Design and implementationof an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans Control Syst Technol 14(3):501. doi:10.1109/TCST.2006.872536

    Article  Google Scholar 

  34. Haykin S (2001) Kalman filtering and neural networks. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar N. Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Franco, M., Sanchez, E.N., Alanis, A.Y. et al. Neural Control for Driving a Mobile Robot Integrating Stereo Vision Feedback. Neural Process Lett 43, 425–444 (2016). https://doi.org/10.1007/s11063-015-9427-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-015-9427-4

Keywords

Navigation