Abstract
Linear representation usually used by the optimization model about low-rankness and sparsity limits their applications to some extent. In this paper, we propose Bayesian low-rank and sparse nonlinear representation (BLSN) model exploiting nonlinear representation. Different from the optimization model, BLSN can be solved by traditional algorithm in Bayesian statistics easily without knowing the explicit mapping by kernel trick. Moreover, it can learn the parameters adaptively to choose the low-rank and sparse properties and also provides a way to enforce more properties on one quantity in a Bayesian model. Based on the observation that the data points drawn from a union of manifolds may gain more meaningful linear structure after a nonlinear mapping, we apply BLSN for manifold clustering. It can handle different problems by constructing various kernels. With respect to the case of linear manifold, known as subspace segmentation, we propose a kernel by the Veronese mapping. In addition, we also design the kernel matrices for the case of nonlinear manifold. Experimental results confirm the effectiveness and the potential of our model for manifold clustering.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Armagan A, Dunson DB, Lee J (2013) Generalized double Pareto shrinkage. Stat Sin 23(1):119–143
Babacan SD, Luessi M, Molina R, Katsaggelos AK (2012) Sparse bayesian methods for low-rank matrix estimation. IEEE Trans Signal Process 60(8):3964–3977
Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233
Beal M (2003) Variational algorithm for approximate bayesian inference. Ph.D. thesis, University College London
Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
Carvalho CM, Polson NG (2010) The horseshoe estimator for sparse signals. Biometrika 97(2):465–480
Chen G, Atev S, Lerman G (2009) Kernel spectral curvature clustering. CoRR arXiv:0909.1605
Chen G, Lerman G (2009) Spectral curvature clustering. Int J Comput Vis 81(3):317–330
Cheng B, Liu G, Wang J, Huang Z, Yan S (2011) Multi-task low-rank affinity pursuit for image segmentation. In: ICCV, pp 2439–2446
Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker Inc, New York
Ding X, He L, Carin L (2011) Bayesian robust principal component analysis. IEEE Trans Image Process 20(12):3419–3430
Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR, pp 2790–2797
Elhamifar E, Vidal R (2010) Clustering disjoint subspaces via sparse representation. In: ICASSP, pp 1926–1929
Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781
Feng J, Lin Z, Xu H, Yan S (2014) Robust subspace segmentation with block-diagonal prior. In: CVPR, pp 3818–3825
Figueiredo MAT (2003) Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal Mach Intell 25(9):1150–1159
Hans C (2009) Bayesian lasso regression. Biometrika 96(4):835–845
Harris J (1992) Algebraic geometry. Springer, New York
Ho J, Yang MH, Lim J, Lee KC, Kriegman DJ (2003) Clustering appearances of objects under varying illumination conditions. In: CVPR, pp 11–18
Hu H, Lin Z, Feng J, Zhou J (2014) Smooth representation clustering. In: CVPR, pp 3834–3841
Jim Philip (2010) Inference with normal-gamma prior distributions in regression problems. Bayesian Anal 5(1):171–188
Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multitask sparsity pursuit. IEEE Trans Image Process 21(3):1327–1338
Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698
Lin Z, Chen M, Wu L, Ma Y (2009) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report, UILU-ENG-09-2215
Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184
Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: ICML, pp 663–670
Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: ICCV, pp 1615–1622
Liu R, Lin Z, la Torre FD, Su Z (2012) Fixed-rank representation for unsupervised visual learning. In: CVPR, pp 598–605
Lowe DG (1999) Object recognition from local scale-invariant features. In: ICCV, pp 1150–1157
Lu CY, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: ICCV, pp 1345–1352
Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: ECCV, pp 347–360
von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
Ojala T, Pietikäinen M, Mäenpää T (2000) Gray scale and rotation invariant texture classification with local binary patterns. In: ECCV, pp 404–420
Patel VM, Vidal R (2014) Kernel sparse subspace clustering. In: ICIP
Rao S, Tron R, Vidal R, Ma Y (2010) Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans Pattern Anal Mach Intell 32(10):1832–1845
Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press, Cambridge
Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905
Soltanolkotabi M, Candès EJ (2011) A geometric analysis of subspace clustering with outliers. CoRR arXiv:1112.4258
Souvenir R, Pless R (2005) Manifold clustering. In: ICCV, pp 648–653
Tang K, Liu R, Su Z, Zhang J (2014) Structure-constrained low-rank representation. IEEE Trans Neural Netw Learn Syst 25:2167–2179
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288
Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analysers. Neural Comput 11(2):443–482
Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR
Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68
Wang JJ, Bensmail H, Gao X (2014) Feature selection and multi-kernel learning for sparse representation on a manifold. Neural Netw 51:9–16
Wang Y, Jiang Y, Wu Y, Zhou Z (2010) Multi-manifold clustering. In: PRICAI, pp 280–291
Wang Y, Jiang Y, Wu Y, Zhou Z (2011) Spectral clustering on multiple manifolds. IEEE Trans Neural Netw 22(7):1149–1161
Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: ECCV, pp 94–106
Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225
Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking. In: ECCV, pp 470–484
Zhang X (2004) Matrix analysis and applications. Springer, New York
Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning. In: CVPR, pp 2328–2335
Acknowledgments
The work of Z. Su was supported by the National Nature Science Foundation of China (No. 61572099, 61173103, 91230103), National Science and Technology Major Project (No. 2013ZX04005021, 2014ZX04001011).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Tang, K., Zhang, J., Su, Z. et al. Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering. Neural Process Lett 44, 719–733 (2016). https://doi.org/10.1007/s11063-015-9490-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-015-9490-x