Skip to main content
Log in

A Neural Network Approach for Solving a Class of Fractional Optimal Control Problems

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper the perceptron neural networks are applied to approximate the solution of fractional optimal control problems. The necessary (and also sufficient in most cases) optimality conditions are stated in a form of fractional two-point boundary value problem. Then this problem is converted to a Volterra integral equation. By using perceptron neural network’s ability in approximating a nonlinear function, first we propose approximating functions to estimate control, state and co-state functions which they satisfy the initial or boundary conditions. The approximating functions contain neural network with unknown weights. Using an optimization approach, the weights are adjusted such that the approximating functions satisfy the optimality conditions of fractional optimal control problem. Numerical results illustrate the advantages of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38:323–337

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal OP (2002) Formulation of Euler–Lagrange equations for fractional variational problems. Math Anal Appl 272:368–379

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrawal OP (1988) General formulation for the numerical solution of optimal control problems. Int J Control 50:627–638

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrawal OP (2008) A quadratic numerical scheme for fractional optimal control problems. J Dyn Syst Meas 130:011010

    Article  Google Scholar 

  5. Athans M, Falb PL (2007) Optimal control an introduction to the theory and its applications. Dover Publications Inc., New York

    MATH  Google Scholar 

  6. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, Chichester

    Book  MATH  Google Scholar 

  7. Cybenko G (1989) Approximations by superpositions of sigmoidal functions. Math Control Signals Syst 2:303–314

    Article  MathSciNet  MATH  Google Scholar 

  8. Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180:1434–1457

    Article  MathSciNet  MATH  Google Scholar 

  10. Effati S, Pakdaman M (2010) Optimal control problem via neural networks. Neural Comput Appl 23:2093–2100

    Article  Google Scholar 

  11. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  12. Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012) Reinforcement learning and optimal adaptive control: An overview and implementation examples. Annu Rev Control 36:42–59

    Article  Google Scholar 

  13. Kilbas AA, Srivastava HM, Trujilo JJ (2006) Theory and applications of fractional differential equations. Elsevier, New York

    Google Scholar 

  14. Kirk DE (2004) Optimal control theory. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  15. Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000

    Article  Google Scholar 

  16. Lotfi A, Yousefi SA, Dehghan M (2013) Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J Comput Appl Math 250:143–160

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller KS, Roos B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    Google Scholar 

  18. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  19. Pakdaman M, Effati S (2015) Approximating the solution of optimal control problems by fuzzy systems. Neural Process Lett 1:1–20. doi:10.1007/s11063-015-9440-7

    Google Scholar 

  20. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  21. Pooseh S, Almeida R, Torres DFM (2014) Fractional order optimal control problems with free terminal time. J Ind Manag Optim 10:363–381

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibrahim RW (2013) The fractional differential polynomial neural network for approximation of functions. Entropy 15:4188–4198

    Article  MathSciNet  MATH  Google Scholar 

  23. Sage AP, White CC III (1977) Optimum systems control. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  24. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Langhorne

    MATH  Google Scholar 

  25. Shen J, Lam J (2014) \(H_{\infty }\) model reduction for positive fractional order systems. Asian J Control 16:1–10

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen J, Lam J (2014) State feedback \(H_{\infty }\) control of commensurate fractional-order systems. Int J Syst Sci 45:363–372

    Article  MathSciNet  MATH  Google Scholar 

  27. Sweilam NH, Al-Ajami TM, Hoppe HW (2013) Numerical solution of some types of fractional optimal control problems. Sci World J, pp 1–9

  28. Vrabie D, Lewis F (2009) Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw 22:237–246

    Article  MATH  Google Scholar 

  29. Wahl H-G, Holzapfel M, Gauterin F (2014) Approximate dynamic programming methods applied to far trajectory planning in optimal control. 2014 IEEE intelligent vehicles symposium (IV), Dearborn, 8–11 June 2014

  30. Yang X, Liu D, Wang D (2014) Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints. Int J Control 87:553–566

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Effati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javad Sabouri K., Effati, S. & Pakdaman, M. A Neural Network Approach for Solving a Class of Fractional Optimal Control Problems. Neural Process Lett 45, 59–74 (2017). https://doi.org/10.1007/s11063-016-9510-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9510-5

Keywords

Navigation