Skip to main content
Log in

A New Sparse Learning Machine

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Many algorithms have been proposed so far for pruning and sparse approximation of feedforward neural networks with random weights in order to obtain compact networks which are fast and robust on various datasets. One drawback of the randomization process is that the resulted weight vectors might be highly correlated. It has been shown that ensemble classifiers’ error depends on the amount of error correlation between them. Thus, decrease in correlation between output vectors must lead to generation of more efficient hidden nodes. In this research a new learning algorithm called New Sparse Learning Machine (NSLM) for single-hidden layer feedforward networks is proposed for regression and classification. In the first phase, the algorithm creates hidden layer with small correlation among nodes by orthogonalizing the columns of the output matrix. Then in the second phase, using \(L_1\)-norm minimization problem, NSLM makes the components of the solution vector become zero as many as possible. The resulted network has higher degree of sparsity while the accuracy is maintained or improved. Therefore, the method leads to a new network with a better generalization performance. Numerical comparisons on several classification and regression datasets confirm the expected improvement in comparison to the basic network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251–257. doi:10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  2. Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6:861–867. doi:10.1016/S0893-6080(05)80131-5

    Article  Google Scholar 

  3. Igelnik B, Pao YH (1995) Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw 6:1320–1329. doi:10.1109/72.471375

    Article  Google Scholar 

  4. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257. doi:10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  5. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892. doi:10.1109/TNN.2006.875977

    Article  Google Scholar 

  6. Huang GB, Babri H (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9:224–229. doi:10.1109/72.655045

    Article  Google Scholar 

  7. Anders U, Korn O (1999) Model selection in neural networks. Neural Netw 12:309–323. doi:10.1016/S0893-6080(98)00117-8

    Article  Google Scholar 

  8. Sietsma J, Dow RJ (1988) Neural net pruning-why and how. In: IEEE international conference on neural networks, pp 325–333. doi:10.1109/ICNN.1988.23864

  9. Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: Proceedings of IJCNN’01 IEEE international joint conference on neural networks, vol 2, pp 796–801. doi:10.1109/IJCNN.2001.939461

  10. Setiono R (1997) A penalty-function approach for pruning feedforward neural networks. Neural Comput 9:185–204. doi:10.1162/neco.1997.9.1.185

    Article  MATH  Google Scholar 

  11. Setiono R (1996) Extracting rules from pruned neural networks for breast cancer diagnosis. Artif Intell Med 8:37–51. doi:10.1016/0933-3657(95)00019-4

    Article  Google Scholar 

  12. Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16:57–67. doi:10.1109/TNN.2004.836241

    Article  Google Scholar 

  13. Rong HJ, Ong YS, Tan AH, Zhu Z (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72:359–366. doi:10.1016/j.neucom.2008.01.005

    Article  Google Scholar 

  14. Alcin OF, Sengur A, Ghofrani S, Ince MC (2014) GA-SELM Greedy algorithms for sparse extreme learning machine. Measurement 55:126–132. doi:10.1016/j.measurement.2014.04.012

    Article  Google Scholar 

  15. Balasundaram S, Gupta D (2014) 1-Norm extreme learning machine for regression and multiclass classification using Newton method. Neurocomputing 128:4–14. doi:10.1016/j.neucom.2013.03.051

    Article  Google Scholar 

  16. Sakar A, Mammone RJ (1993) Growing and pruning neural tree networks. IEEE Trans Comput 42:291–299. doi:10.1109/12.210172

    Article  Google Scholar 

  17. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6:5–20. doi:10.1016/j.inffus.2004.04.004

    Article  Google Scholar 

  18. Hsu KW, Srivastava J (2010) Relationship between diversity and correlation in multi-classifier systems. In: Zaki MJ, Yu JX, Ravindran B, Pudi V (eds) Advances in knowledge discovery and data mining. Springer, Berlin, pp 500–506. doi:10.1007/978-3-642-13672-647

    Chapter  Google Scholar 

  19. Tumer K, Ghosh J (1996) Error correlation and error reduction in ensemble classifiers. Connect Sci 8:385–404. doi:10.1080/095400996116839

    Article  Google Scholar 

  20. Lichman M (2013) UCI Machine learning repository. University of California Irvine, CA. http://archive.ics.uci.edu/ml. Accessed 22 March 2016

  21. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Cambridge. ISBN: 1-886529-00-0

  22. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  23. Cohen H (1993) A course in computational algebraic number theory. Springer-Verlag New York, Inc., New York

    Book  MATH  Google Scholar 

  24. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the constructive comments and suggestions that help improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Monsefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayyeri, M., Maskooki, A. & Monsefi, R. A New Sparse Learning Machine. Neural Process Lett 46, 15–28 (2017). https://doi.org/10.1007/s11063-016-9566-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9566-2

Keywords

Navigation