Skip to main content
Log in

Normalised Spline Adaptive Filtering Algorithm for Nonlinear System Identification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper proposed a normalised spline adaptive filtering algorithm to improve the stability of spline adaptive filtering (SAF) algorithm against the eigenvalue spread of the autocorrelation matrix of the input signal. The new adaptive filtering algorithm is based on the normalised least mean square (NLMS) approach and the value range of the learning rate in this algorithm is specified. This algorithm is called SAF-NLMS. In this work, first the derivation of the SAF-NLMS algorithm is given. Second, detailed convergence and the computational complexity analyses are carried out. Finally, the performance of the proposed algorithm is tested according to artificial datasets and real datasets. The achieved results present actually good performance. So, in practical engineering, the algorithm can be used to solve the problem of modeling or identification of nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Nerrand O, Roussel-Ragot P, Personnaz L, Dreyfus G (1993) Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms. Neural Comput 5(5):165–199

    Article  Google Scholar 

  2. Barreto GA, Souza LG (2006) Adaptive filtering with the self-organizing map: a performance comparison. Neural Netw 19(6–7):785–798

    Article  MATH  Google Scholar 

  3. Barreto GA, Barros ALBP (2014) On the design of robust linear pattern classifiers based on M-estimators. Neural Process Lett 42(1):1–19

    Google Scholar 

  4. Kong XY, Hu CH, Han CZ (2009) A self-stabilizing neural algorithm for total least squares filtering. Neural Process Lett 30(3):257–271

    Article  Google Scholar 

  5. Widrow B, Lehr MA (1990) 30 years of adaptive neural network, perceptron, madaline, and back propagation. Proc IEEE 78(9):1415–1442

    Article  Google Scholar 

  6. Kim JH, Zhang W, Ryu SK, Oh YS (2012) An ADALINE neural network with truncated momentum for system identification of linear time varying systems. IEEE Int Conf Ind Technol 2012:292–297

    Google Scholar 

  7. Aouiti C, M’Hamdi MS, Touati A (2016) Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett 45(1):121–140

    Article  Google Scholar 

  8. Egrioglu E, Yolcu U, Aladag CH, Bas E (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258

    Article  Google Scholar 

  9. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  10. Prawin J, Rao ARM (2017) Nonlinear identification of MDOF systems using Volterra series approximation. Mech Syst Signal Process 84:58–77

    Article  Google Scholar 

  11. LeCaillec J-M (2011) Spectral inversion of second order Volterra models based on the blind identification of Wiener models. Signal Process 91(11):2541–2555

    Article  MATH  Google Scholar 

  12. Sicuranza GL, Carini A (2011) A generalized FLANN filter for nonlinear active noise control. IEEE Trans Audio Speech Lang Process 19(8):2412–2417

    Article  Google Scholar 

  13. Richard C, Bermudez J, Honeine P (2009) Online prediction of time series data with kernels. IEEE Trans Signal Process 57(3):1058–1067

    Article  MathSciNet  Google Scholar 

  14. Engel Y, Mannor S, Meir R (2012) Kernel recursive least squares. IEEE Trans Signal Process 52(5):2275–2285

    MathSciNet  MATH  Google Scholar 

  15. Liu W, Príncipe JC, Haykin S (2009) Extended kernel recursive least squares algorithm. IEEE Trans Signal Process 57(10):3801–3814

    Article  MathSciNet  Google Scholar 

  16. Liu W, Príncipe JC, Simon H (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 2008(1):1–12

    Article  MATH  Google Scholar 

  17. Chen B, Zhao S, Zhu P, Principe JC (2012) Quantized kernel least mean square algorithm. IEEE Trans Neural Netw Learn Syst 23(1):22–32

    Article  Google Scholar 

  18. Parreira WD, Bermudez JCM, Richard C, Tourneret J-Y (2012) Stochastic behavior analysis of the Gaussian kernel least-mean-square algorithm. IEEE Trans Signal Process 60(5):2208–2222

    Article  MathSciNet  Google Scholar 

  19. Scarpiniti M, Comminiello D, Parisi R, Uncini A (2013) Nonlinear spline adaptive filtering. Signal Process 93(4):772–783

    Article  Google Scholar 

  20. Scarpiniti M, Comminiello D, Parisi R, Uncini A (2015) Nonlinear system identification using IIR spline adaptive filters. Signal Process 108(108):30–35

    Article  Google Scholar 

  21. Scarpiniti M, Comminiello D, Parisi R, Uncini A (2014) Hammerstein uniform cubic spline adaptive filters: learning and convergence properties. Signal Process 100(7):112–123

    Article  Google Scholar 

  22. Patel V, George NV (2016) Compensating acoustic feedback in feed-forward active noise control systems using spline adaptive filters. Signal Process 120:448–455

    Article  Google Scholar 

  23. Scarpiniti M, Comminiello D, Scarano G, Parisi R (2016) Steady-state performance of spline adaptive filters. IEEE Trans Signal Process 64(4):816–828

    Article  MathSciNet  Google Scholar 

  24. Scarpiniti M, Comminiello D, Parisi R, Uncini A (2015) Novel cascade spline architectures for the identification of nonlinear systems. IEEE Trans Circuits Syst I 62(7):1825–1835

    Article  MathSciNet  Google Scholar 

  25. Yin L, Astola J, Neuvo Y (1993) A new class of nonlinear filters-neural filters. IEEE Trans Signal Process 41(3):1201–1222

    Article  MATH  Google Scholar 

  26. Widrow B (2005) Thinking about thinking: the discovery of the LMS algorithm. IEEE Signal Process Mag 22(1):100–106

    Article  Google Scholar 

  27. Sayin MO, Vanli ND, Kozat SS (2013) A novel family of adaptive filtering algorithms based on the logarithmic cost. IEEE Trans Signal Process 62(17):4411–4424

    Article  MathSciNet  Google Scholar 

  28. Bershad NJ (1986) Analysis of the normalized LMS algorithm with Gaussian inputs. IEEE Trans Acoust Speech Signal Process 34(4):793–806

    Article  Google Scholar 

  29. De Moor BLR (2006) DaISy: database for the identification of systems. Department of Electrical Engineering, ESAT/STADIUS, KU Leuven, Belgium. http://homes.esat.kuleuven.be/~smc/daisy/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant: 61074120, 61673310) and the State Key Laboratory of Intelligent Control and Decision of Complex Systems of Beijing Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Li, Z. Normalised Spline Adaptive Filtering Algorithm for Nonlinear System Identification. Neural Process Lett 46, 595–607 (2017). https://doi.org/10.1007/s11063-017-9606-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9606-6

Keywords

Navigation