Skip to main content
Log in

Recurrent High Order Neural Observer for Discrete-Time Non-Linear Systems with Unknown Time-Delay

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This work proposes a discrete-time non-linear neural observer based on a recurrent high order neural network in parallel model trained with an algorithm based on the extended Kalman filter for discrete-time multiple input multiple output non-linear systems with unknown dynamics and unknown time-delay. To prove the semi-globally uniformly ultimately boundedness of the proposed neural observer the stability analysis based on the Lyapunov approach is included. Applicability of the proposed observer is shown via simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Matlab is a registered trademark of MathWorks Inc.

  2. Simulink is a registered trademark of MathWorks Inc.

  3. LabVolt is a registered trademark of Festo Didactic Inc.

  4. dSPACE is a registered trademark of dSPACE GmbH.

  5. ControlDesk is a registered trademark of dSPACE GmbH.

References

  1. Alanis AY, Rios JD, Arana Daniel N, Lopez Franco C (2016) Neural identifier for unknown discrete-time nonlinear delayed systems. Neural Comput Appl 27(8):1–12

  2. Alanis AY, Rios JD, Rivera J, Arana-Daniel N, Lopez-Franco C (2015) Real-time discrete neural control applied to a linear induction motor. Neurocomputing 164:240–251

    Article  Google Scholar 

  3. Arana-Daniel N, Gallegos AA, Lopez-Franco C, Alanis AY (2014) Smooth global and local path planning for mobile robot using particle swarm optimization, radial basis functions, splines and bezier curves. In: 2014 IEEE congress on evolutionary computation (CEC), pp 175–182

  4. Benitez VH, Loukianov AG, Sanchez EN (2003) Neural identification and control of a linear induction motor using an alpha–beta model. In: Proceedings of the 2003 American control conference, 2003, vol 5, pp 4041–4046

  5. Boukas E, Liu Z (2012) Deterministic and stochastic time-delay systems. Control Engineering, Birkhäuser, Boston

    MATH  Google Scholar 

  6. Chang P, Lee JW (1995) Time delay observer: a robust observer for nonlinear plants using time-delayed signals. In: Proceedings of the 1995 American control conference, vol 3, pp 1638–1642

  7. Chang P, Park S (1998) The enhanced time delay observer for nonlinear systems. In: Proceedings of the 37th IEEE conference on decision and control, 1998, vol 1, pp 367–368

  8. Ellis G (2002) Observers in control systems: a practical guide. Elsevier, San Diego, CA

  9. Fridman E (2014) Introduction to time-delay systems: analysis and control. Systems & control: foundations & applications. Springer, New York

    Book  MATH  Google Scholar 

  10. Gieras J (1994) Linear induction drives. Monographs in electrical and electronic engineering. Clarendon Press, New York

  11. Hagan M, Demuth H, Beale M, De Jesús O (2014) Neural network design, 2nd edn. Martin Hagan, Boston

    Google Scholar 

  12. Haykin S (2004) Kalman filtering and neural networks. Adaptive and cognitive dynamic systems: signal processing, learning, communications and control. Wiley, New York

    Google Scholar 

  13. Haykin S (2011) Neural networks and learning machines. Pearson Education, Upper Saddle River, NJ

  14. Hermans M, Schrauwen B (2010) One step Back propagation through time for learning input mapping in reservoir computing applied to speech recognition. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS), pp 521–524

  15. Krstic M, Bekiaris Liberis N (2012) Control of nonlinear delay systems: a tutorial. In: 2012 IEEE 51st annual conference on decision and control (CDC), pp 5200–5214

  16. Leondes C (1998) Neural network systems techniques and applications: advances in theory and applications. Elsevier, Amsterdam

    Google Scholar 

  17. Loukianov AG, Rivera J, nedo JMC (2002) Discrete-time sliding mode control of an induction motor. In: IFAC proceedings of 15th IFAC world congress, vol 35(1), pp 19–24

  18. Lu G, Ho D (2004) Robust H \(\i \infty \); observer for nonlinear discrete systems with time delay and parameter uncertainties. IEEE Proc Control Theory Appl 151(4):439–444

    Article  Google Scholar 

  19. Mahmoud M (2000) Robust control and filtering for time-delay systems. Automation and control engineering. Taylor & Francis, New York

  20. Mahmoud M (2010) Switched time-delay systems: stability and control. Springer, New York

    Book  MATH  Google Scholar 

  21. Na J, Herrmann G, Ren X, Barber P (2009) Nonlinear observer design for discrete MIMO systems with unknown time delay. In: Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference. CDC/CCC 2009, pp 6137–6142

  22. Raff T, Allgower F (2006) An EKF-based observer for nonlinear time-delay systems. In: American control conference, 2006, p 4

  23. Rajapakse J, Wang L (2004) Neural information processing: research and development. Lecture notes in computer science. Springer, Berlin

  24. Rios J, Alanis A, Rivera J, Hernandez Gonzalez M (2013) Real-time discrete neural identifier for a linear induction motor using a dSPACE DS1104 board. In: The 2013 international joint conference on neural networks (IJCNN), pp 1–6

  25. Ruliang W, Huiying J (2010) Observer-based adaptive neural network robust control of nonlinear time-delay systems with unmodeled dynamics. In: 2010 international conference on computational intelligence and security (CIS), pp 506–510

  26. Sanchez E, Alanis A, Loukianov A (2008) Discrete-time high order neural control: trained with kalman filtering. Studies in computational intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  27. Song Y, Grizzle J (1992) The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. In: American control conference, 1992, pp 3365–3369

  28. Toliyat H, Kliman G (2004) Handbook of electric motors. CRC Press, Boca Raton

    Book  Google Scholar 

  29. Valencia-Murillo R, Arana-Daniel N, Lopez-Franco C, Alanis AY (2013) Rough terrain perception through geometric entities for robot navigation. In: 2nd international conference on advances in computer science and engineering (CSE 2013). Atlantis Press

  30. Wen Y, Ren X (2009) Robust adaptive control based on neural state observer for nonlinear time-delay systems. In: IEEE international conference on control and automation, 2009. ICCA 2009, pp 1178–1183

  31. Xiao L (2015) A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation. Neurocomputing 167:254–259

    Article  Google Scholar 

  32. Xiao L (2016) A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, Part 3:1983–1988

    Article  Google Scholar 

  33. Xiao L, Lu R (2015) Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151, Part 1:246–251

    Article  Google Scholar 

  34. Xu H, Jagannathan S (2013) Neural network based finite horizon stochastic optimal controller design for nonlinear networked control systems. In: The 2013 international joint conference on neural networks (IJCNN), pp 1–7

  35. Xu Z, Li X (2010) Control design based on state observer for nonlinear delay systems. In: 2010 Chinese control and decision conference (CCDC), pp 1946–1950

  36. Yi S, Nelson P, Ulsoy A (2010) Time-delay systems: analysis and control using the Lambert W function. World Scientific, New Jersey

  37. Yu W, Sanchez E (2009) Advances in computational intelligence. Advances in intelligent and soft computing. Springer, Berlin

    MATH  Google Scholar 

  38. Zhang Y, Sircoulomb V, Langlois N (2012) Observer design for discrete-time systems subject to long time-delay. In: 2012 24th Chinese control and decision conference (CCDC), pp 2949–2954

  39. Zhong Q (2006) Robust control of time-delay systems. Springer, London

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the support of CONACYT Mexico, through Projects CB256769 and CB258068 (“Project supported by Fondo Sectorial de Investigacin para la Educación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Y. Alanis.

Appendix

Appendix

Proof of Theorem 1

Consider the candidate Lyapunov function

$$\begin{aligned} {V}_{i}(k)={\tilde{w}^\top }_{i}(k){P}_{i}(k){\tilde{w}}_{i}(k) + {\tilde{x}^\top }_{i}(k){P}_{i}(k){\tilde{x}}_{i}(k) \end{aligned}$$
(25)

whose first increment is defined as

$$\begin{aligned} {\varDelta V}_{i}(k)= & {} V(k+1) - V(k) \nonumber \\ {\varDelta V}_{i}(k)= & {} {\tilde{w}^\top }_{i}(k+1){P}_{i}(k+1){\tilde{w}_{i}(k+1)} + {\tilde{x}^\top }_{i}(k+1){P}_{i}(k+1){\tilde{x}}_{i}(k+1) \nonumber \\&-\, {\tilde{w}^\top }_{i}(k){P}_{i}(k){\tilde{w}}_{i}(k) - {\tilde{x}^\top }_{i}(k){P}_{i}(k){\tilde{x}}_{i}(k) \end{aligned}$$
(26)

Using (9), (13) and (16) in (26)

$$\begin{aligned} {\varDelta V}_{i}(k)= & {} [{\tilde{w}}_{i}(k)+ {\eta }_{i}{K}_{i}(k)C\tilde{x}(k)]^\top [{A}_{i}(k)][{\tilde{w}}_{i}(k)+ {\eta }_{i}{K}_{i}(k)C\tilde{x}(k)] \nonumber \\&+\, [f(k)-{g}_{i}C\tilde{x}(k)]^\top [{A}_{i}(k)][f(k)-{g}_{i}C\tilde{x}(k)] \nonumber \\&-\, {\tilde{w}^\top }_{i}(k){P}_{i}(k){\tilde{w}}_{i}(k) - {\tilde{x}^\top }_{i}(k){P}_{i}(k){\tilde{x}}_{i}(k) \end{aligned}$$
(27)
$$\begin{aligned} {\varDelta V}_{i}(k)= & {} -\,{\tilde{w}^\top }_{i}(k){B}_{i}(k){\tilde{w}}_{i}(k) - \eta _{i}{\tilde{w}^\top }_{i}(k){A}_{i}(k){K}_{i}(k)C\tilde{x}(k) \nonumber \\&-\, \eta _{i}\tilde{x}^{\top }(k)C^{\top }{K}^{\top }_{i}(k){A}_{i}(k)\tilde{w}_{i}(k)+{\eta }^{2}_{i}\tilde{x}^{\top }(k)C^{\top }{K}^{\top }_{i}(k){A}_{i}(k){K}_{i}(k)C\tilde{x}(k) \nonumber \\&+\, {f}^{\top }(k){A}_{i}(k){f}(k) - {f}^{\top }(k){A}_{i}(k){g}_{i}C\tilde{x}(k) - \tilde{x}^{\top }(k)C^{\top }{g}^{\top }_{i}{A}_{i}(k){f}(k) \nonumber \\&+\, \tilde{x}^{\top }(k)C^{\top }{g}^{\top }_{i}{A}_{i}(k){g}_{i}C\tilde{x}(k) -\, {\tilde{x}^\top }_{i}(k){P}_{i}(k){\tilde{x}}_{i}(k) \end{aligned}$$
(28)

with

$$\begin{aligned} {A}_{i}(k)= & {} {P}_{i}(k) - {B}_{i}(k)\\ {B}_{i}(k)= & {} {K}_{i}(k){H}^{\top }_{i}(k){P}_{i}(k)+{Q}_{i}(k)\\ f(k)= & {} {\tilde{w}^\top }_{i}(k)z(\hat{x}(k),u(k))+\epsilon _{{z}_{i}}^{\prime } \end{aligned}$$

Using the inequalities

$$\begin{aligned} X^{\top }X + Y^{\top }Y\ge & {} 2{X}^{\top }Y \\ X^{\top }X + Y^{\top }Y\ge & {} -2{X}^{\top }Y \\ -\lambda \text {min}(P)X^2\ge & {} -{X}^{\top }{P}{X} \ge -\lambda \text {max}(P)X^2 \end{aligned}$$

which are valid \(\forall X,Y \in \mathfrak {R}^n,\forall P \in \mathfrak {R}^{n \times n}, P = P^\top > 0\) then (28) can be rewritten as

$$\begin{aligned} {\varDelta V}_{i}(k)\le & {} -\,{\tilde{w}^\top }_{i}(k){B}_{i}(k){\tilde{w}}_{i}(k) + {\eta }^{2}_{i}\tilde{x}^{\top }(k)C^{\top }{K}^{\top }_{i}(k){A}_{i}(k){K}_{i}(k)C\tilde{x}(k) \nonumber \\&+\, {\tilde{w}^\top }_{i}(k){\tilde{w}}_{i}(k) + {\eta }^{2}_{i}\tilde{x}^{\top }(k)C^{\top }{K}^{\top }_{i}(k){A}^{\top }_{i}(k){A}_{i}(k){K}_{i}(k)C\tilde{x}(k) \nonumber \\&+\, {f}^{\top }(k){A}_{i}(k){f}(k) + \tilde{x}^{\top }(k)C^{\top }{g}^{\top }_{i}{A}_{i}(k){g}_{i}C\tilde{x}(k) \nonumber \\&+\, {f}^{\top }(k){f}(k) + \tilde{x}^{\top }(k)C^{\top }{g}^{\top }_{i}{A}^{\top }_{i}(k){A}_{i}(k){g}_{i}C\tilde{x}(k) \nonumber \\&- \,{\tilde{x}^\top }_{i}(k){P}_{i}(k){\tilde{x}}_{i}(k) \end{aligned}$$
(29)

then

$$\begin{aligned} {\varDelta V}_{i}(k)\le & {} - \Vert {\tilde{w}}_{i}(k) \Vert ^2 \lambda \text {min}({B}_{i}(k)) + {\eta }^{2}_{i} \Vert {\tilde{x}}(k) \Vert ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert {\tilde{w}}_{i}(k) \Vert ^2 + {\eta }^{2}_{i} \Vert {\tilde{x}}(k) \Vert ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda ^2 \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert f(k) \Vert ^2 \lambda \text {max}({A}_{i}(k)) + \Vert \tilde{x}(k) \Vert ^2 \Vert C{g}_{i} \Vert ^2 \lambda \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert f(k) \Vert ^2 + \Vert \tilde{x}(k) \Vert ^2 \Vert C{g}_{i} \Vert ^2 \lambda ^2 \text {max}({A}_{i}(k)) - \Vert \tilde{x}(k) \Vert ^2 \lambda \text {min}({P}_{i}(k)) \nonumber \\ \end{aligned}$$
(30)

substituting f(k), then

$$\begin{aligned} {\varDelta V}_{i}(k)\le & {} - \Vert {\tilde{w}}_{i}(k) \Vert ^2 \lambda \text {min}({B}_{i}(k)) + {\eta }^{2}_{i} \Vert {\tilde{x}}(k) \Vert ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert {\tilde{w}}_{i}(k) \Vert ^2 + {\eta }^{2}_{i} \Vert {\tilde{x}}(k) \Vert ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda ^2 \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert {\tilde{w}}_{i}(k) \Vert ^2 \Vert z(\hat{x}(k),u(k)) \Vert ^2 \lambda \text {max}({A}_{i}(k)) + \mid \epsilon _{{z}_{i}}^{\prime } \mid ^2 \lambda \text {max}({A}_{i}(k)) \nonumber \\&+\, \Vert \tilde{x}(k) \Vert ^2 \Vert C{g}_{i} \Vert ^2 \lambda \text {max}({A}_{i}(k)) + \Vert {\tilde{w}}_{i}(k) \Vert ^2 \Vert z(\hat{x}(k),u(k)) \Vert ^2 \nonumber \\&+ \,\mid \epsilon _{{z}_{i}}^{\prime } \mid ^2 + \Vert \tilde{x}(k) \Vert ^2 \Vert C{g}_{i} \Vert ^2 \lambda ^2 \text {max}({A}_{i}(k)) - \Vert \tilde{x}(k) \Vert ^2 \lambda \text {min}({P}_{i}(k)) \end{aligned}$$
(31)

Defining

$$\begin{aligned} {E}_{i}(k)= & {} -\eta ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda \text {max}({A}_{i}(k))-\eta ^2 \Vert C{K}_{i}(k) \Vert ^2 \lambda \text {max}({A}^{2}_{i}(k)) \nonumber \\&-\,\Vert C{g}_{i} \Vert ^2 \lambda \text {max}({A}_{i}(k))-\Vert C{g}_{i} \Vert ^2 \lambda \text {max}({A}^{2}_{i}(k)) + \lambda \text {min}({P}_{i}(k)) \nonumber \\ {F}_{i}(k)= & {} -1 + \lambda \text {min}({B}_{i}(k)) - \Vert z(\hat{x}(k),u(k)) \Vert ^2 \lambda \text {max}({A}_{i}(k)) \nonumber \\&- \,\Vert z(\hat{x}(k),u(k)) \Vert ^2 \end{aligned}$$
(32)

then (31) can be express as:

$$\begin{aligned} {\varDelta V}_{i}(k)\le & {} -\Vert \tilde{x}(k) \Vert ^2 {E}_{i}(k) - \Vert \tilde{w}_{i}(k) \Vert ^2 {F}_{i}(k) \nonumber \\&+\, \mid \epsilon _{{z}_{i}}^{\prime } \mid ^2 (1 + \lambda \text {max}({A}_{i}(k))) \end{aligned}$$
(33)

Hence, \({\varDelta V}_{i}(k) < 0\) when

$$\begin{aligned} \Vert {\tilde{x}}(k) \Vert > \sqrt{\frac{\mid \epsilon _{{z}_{i}}^{\prime } \mid ^2 (1 + \lambda \text {max}({A}_{i}(k)))}{{E}_{i}(k)}}\equiv \kappa _{1} \end{aligned}$$
(34)

or

$$\begin{aligned} \Vert {\tilde{w}}_{i}(k) \Vert > \sqrt{\frac{\mid \epsilon _{{z}_{i}}^{\prime } \mid ^2 (1 + \lambda \text {max}({A}_{i}(k)))}{{F}_{i}(k)}} \equiv \kappa _{2} \end{aligned}$$
(35)

Therefore, the solution of (19) and (13) is stable; hence the estimation error and the RHONN weights are SGUUB. Considering (15) and (12), it is easy to see that the output error has an algebraic relation with \(\tilde{x}(k)\), for that reason. if \(\tilde{x}(k)\) is bounded, e(k) is bounded too.

$$\begin{aligned} e(k)= & {} C\tilde{x}(k) \\ \Vert e(k) \Vert= & {} \Vert C \Vert \Vert \tilde{x}(k) \Vert \end{aligned}$$

\(\square \)

Remark 1

Considering Theorem 1 and its proof, it can be easily shown that the result can be extended to systems with multiple delays like \(x\left( k-l_{i}\right) \) with \(i=1,2,\ldots \), instead of \(x\left( k-l\right) \) in (2) and/or for time-variying delays \(x\left( k-l_{i}\left( k\right) \right) \) with \(l_{i}\left( k\right) \) bounded by \(l_{i}\left( k\right) \le l\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios, J.D., Alanis, A.Y., Arana-Daniel, N. et al. Recurrent High Order Neural Observer for Discrete-Time Non-Linear Systems with Unknown Time-Delay. Neural Process Lett 46, 663–679 (2017). https://doi.org/10.1007/s11063-017-9617-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9617-3

Keywords

Navigation