Skip to main content
Log in

Delay-Independent Stability of Riemann–Liouville Fractional Neutral-Type Delayed Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is concerned with the delay-independent stability of Riemann–Liouville fractional-order neutral-type delayed neural networks. By constructing a suitable Lyapunov functional associated with fractional integral and fractional derivative terms, several sufficient conditions to ensure delay-independent asymptotic stability of the equilibrium point are obtained. The presented results are easily checked as they are described as the matrix inequalities or algebraic inequalities in terms of the networks parameters only. Two numerical examples are also given to show the validity and feasibility of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang JR, Zhou Y, Fečkan M (2012) Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput Math Appl 64(10):3389–3405

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  3. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  4. Laskin N (2000) Fractional market dynamics. Phys A Stat Mech Appl 287(3–4):482–492

    Article  MathSciNet  Google Scholar 

  5. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  6. Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C Mech Syst Mach Elem Manuf 42:825–837

    Article  Google Scholar 

  7. Sabatier J, Agrawal OP, Machado JAT (2007) Advances in fractional calculus. Springer, Dordrecht

    Book  MATH  Google Scholar 

  8. Baleanu D (2012) Fractional dynamics and control. Springer, Berlin

    Book  Google Scholar 

  9. Magin R (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    Article  MathSciNet  MATH  Google Scholar 

  10. Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59(5):1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu S, Li XY, Jiang W, Zhou XF (2012) Mittag-Leffler stability of nonlinear fractional neutral singular systems. Commun Nonlinear Sci Numer Simul 17(10):3961–3966

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang JR, Lv LL, Zhou Y (2012) New concepts and results in stability of fractional differential equations. Commun Nonlinear Sci Numer Simul 17(6):2530–2538

    Article  MathSciNet  MATH  Google Scholar 

  13. Duarte-Mermoud MA, Aguila-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22(1–3):650–659

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu S, Zhou XF, Li XY, Jiang W (2016) Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Nonlinear Dyn 84(4):2377–2385

    Article  MathSciNet  MATH  Google Scholar 

  15. Lazarević MP, Spasić AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math Comput Model 49(3–4):475–481

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao JD (2001) Global exponential stability of Hopfield neural networks. Int J Syst Sci 32(2):233–236

    Article  MathSciNet  MATH  Google Scholar 

  17. Dharani S, Rakkiyappan R, Cao JD (2015) New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing 151(2):827–834

    Article  Google Scholar 

  18. Cao JD, Huang DS, Qu YZ (2005) Global robust stability of delayed recurrent neural networks. Chaos Solitons Fractals 23(1):221–229

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu Y, Wang ZD, Liu X (2006) Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw 19(5):667–675

    Article  MATH  Google Scholar 

  20. Gong WQ, Liang JL, Cao JD (2015) Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays. Neural Netw 70:81–89

    Article  Google Scholar 

  21. Xu SY, Lam J, Ho DWC, Zou Y (2005) Novel global asymptotic stability criteria for delayed cellular neural networks. IEEE Trans Circuits Syst II Express Briefs 52(6):349–353

    Article  Google Scholar 

  22. Zhang Q, Wei XP, Xu J (2007) Stability of delayed cellular neural networks. Chaos Solitons Fractals 31(2):514–520

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiong WJ, Shi YB, Cao JD (2017) Stability analysis of two-dimensional neutral-type Cohen–Grossberg BAM neural networks. Neural Comput Appl 28(4):703–716

    Article  Google Scholar 

  24. Huang ZT, Luo XS, Yang QG (2007) Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse. Chaos Solitons Fractals 34(3):878–885

    Article  MathSciNet  MATH  Google Scholar 

  25. Park JH, Park CH, Kwon OM, Lee SM (2008) A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl Math Comput 199(2):716–722

    MathSciNet  MATH  Google Scholar 

  26. Wang F, Liang JL, Wang F (2016) Optimal control for discrete-time singular stochastic systems with input delay. Optim Control Appl Methods 37(6):1282–1313

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiao H, Peng JG, Xu ZB, Zhang B (2003) A reference model approach to stability analysis of neural networks. IEEE Trans Syst Man Cybern Part B Cybern 33(6):925–936

    Article  Google Scholar 

  28. Gong WQ, Liang JL, Zhang CJ, Cao JD (2016) Nonlinear measure approach for the stability analysis of complex-valued neural networks. Neural Process Lett 44(2):539–554

    Article  Google Scholar 

  29. Shen B, Wang ZD, Qiao H (2016) Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans Neural Netw Learn Syst 28(5):1152–1163

    Article  Google Scholar 

  30. Li Q, Shen B, Liu YR, Huang TW (2016) Event-triggered \(H_\infty \) state estimation for discrete-time neural networks with mixed time delays and sensor saturations. Neural Comput Appl. doi:10.1007/s00521-016-2271-2

  31. Wang F, Liang JL, Huang TW (2016) Synchronization of stochastic delayed multi-agent systems with uncertain communication links and directed topologies. IET Control Theory Appl 11(1):90–100

    Article  Google Scholar 

  32. Lien CH, Yu KW, Lin YF, Chung YJ, Chung LY (2008) Global exponential stability for uncertain delayed neural networks of neutral type with mixed time delays. IEEE Trans Syst Man Cybern Part B Cybern 38(3):709–720

    Article  Google Scholar 

  33. Cheng L, Hou ZG, Tan M (2008) A neutral-type delayed projection neural network for solving nonlinear variational inequalities. IEEE Trans Circuits Syst II Express Briefs 55(8):806–810

    Article  Google Scholar 

  34. Cheng CJ, Liao TL, Yan JJ, Hwang CC (2006) Globally asymptotic stability of a class of neutral-type neural networks with delays. IEEE Trans Syst Man Cybern Part B Cybern 36(5):1191–1195

    Article  Google Scholar 

  35. Samli R, Arik S (2009) New results for global stability of a class of neutral-type neural systems with time delays. Appl Math Comput 210(2):564–570

    MathSciNet  MATH  Google Scholar 

  36. Orman Z (2012) New sufficient conditions for global stability of neutral-type neural networks with time delays. Neurocomputing 97:141–148

    Article  Google Scholar 

  37. Rakkiyappan R, Zhu Q, Chandrasekar A (2014) Stability of stochastic neural networks of neutral type with Markovian jumping parameters: a delay-fractioning approach. J Frankl Inst 351(3):1553–1570

    Article  MathSciNet  Google Scholar 

  38. Shi K, Zhong S, Zhu H, Liu X, Zeng Y (2015) New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 168:896–907

    Article  Google Scholar 

  39. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  40. Song C, Cao JD (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498

    Article  Google Scholar 

  41. Ren FL, Cao F, Cao JD (2015) Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190

    Article  Google Scholar 

  42. Stamova I (2014) Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77(4):1251–1260

    Article  MathSciNet  MATH  Google Scholar 

  43. Rakkiyappan R, Cao JD, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97

    Article  MathSciNet  MATH  Google Scholar 

  44. Rakkiyappan R, Sivaranjani R, Velmurugan G, Cao JD (2016) Analysis of global \(o(t^{-\alpha })\) stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays. Neural Netw 77:51–69

    Article  Google Scholar 

  45. Yang XJ, Song QK, Liu YR, Zhao ZJ (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26

    Article  Google Scholar 

  46. Ding XS, Cao JD, Zhao X, Alsaadi FE (2017) Finite-time stability of fractional-order complex-valued neural networks with time delays. Neural Process Lett. doi:10.1007/s11063-017-9604-8

  47. Aguila-Camacho N, Duarte-Mermoud MA (2015) Comments on “fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks”. Commun Nonlinear Sci Numer Simul 25(1–3):145–148

    Article  MathSciNet  Google Scholar 

  48. Hale JK, Verduyn SM (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editors, and the anonymous reviewers for their helpful and valuable comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhang.

Additional information

This work is jointly supported by National Natural Science Fund of China (11301308, 61573096, 61272530), the 333 Engineering Fund of Jiangsu Province of China (BRA2015286), the Natural Science Fund of Anhui Province of China (1608085MA14), the Key Project of Natural Science Research of Anhui Higher Education Institutions of China (gxyqZD2016205, KJ2015A152), and the Natural Science Youth Fund of Jiangsu Province of China (BK20160660).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ye, R., Cao, J. et al. Delay-Independent Stability of Riemann–Liouville Fractional Neutral-Type Delayed Neural Networks. Neural Process Lett 47, 427–442 (2018). https://doi.org/10.1007/s11063-017-9658-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9658-7

Keywords

Navigation