Skip to main content
Log in

Mixed \(H_\infty \)/Passive Projective Synchronization for Nonidentical Uncertain Fractional-Order Neural Networks Based on Adaptive Sliding Mode Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper deals with the problem of mixed \(H_\infty \)/passive projective synchronization for two different fractional-order (FO) neural networks with uncertain parameters. Firstly, a fractional integral sliding surface which is suitable for the considered FO error system is proposed. Secondly, in terms of the established sliding surface, combining a novel reaching law, a new adaptive sliding mode control law is introduced, which can force the closed-loop dynamic error system trajectories to reach the sliding surface. Then, a continuous frequency distributed model of the FO dynamic networks is given, via the application of FO system stability theory and robust control, the projective synchronization conditions are addressed in terms of linear matrix inequality techniques. Based on the conditions, a desired controller which can guarantee the robust stability of the closed-loop system and also ensure a mixed \(H_\infty \)/passive performance level is designed. Finally, synchronization of two nonidentical FO neural networks with uncertain parameters as a simulation example is given to illustrate the effectiveness and advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu S, Lam J (2006) A new approach to exponential stability analysis of neural networks with time-varying delays. Neural Netw 19(1):76–83

    Article  MATH  Google Scholar 

  2. Wang Z, Liu Y, Li M et al (2006) Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 17(3):814–820

    Article  Google Scholar 

  3. Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang B, Lam J, Xu S (2015) Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals. IEEE Trans Neural Netw Learn Syst 26(7):1480–1492

    Article  MathSciNet  Google Scholar 

  5. Chen D, Zhang R, Sprott JC et al (2012) Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn 70(2):1549–1561

    Article  MathSciNet  MATH  Google Scholar 

  6. Aghababa MP (2014) Fractional modeling and control of a complex nonlinear energy supply-demand system. Complexity 20(6):74–86

    Article  MathSciNet  Google Scholar 

  7. Wang Z, Huang X, Shi G (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput Math Appl 62(3):1531–1539

    Article  MathSciNet  MATH  Google Scholar 

  8. Podlubny I (1999) Fractional-order systems and \(PI^{\lambda }D^{\mu }\)-controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MathSciNet  Google Scholar 

  9. Wang Z (2013) A numerical method for delayed fractional-order differential equations. J Appl Math 2013(2):707–724

    MathSciNet  Google Scholar 

  10. Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109

    Article  MATH  Google Scholar 

  11. Wang F, Yang Y, Hu M (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244

    Article  Google Scholar 

  12. Wu R, Hei X, Chen L (2013) Finite-time stability of fractional-order neural networks with delay. Commun Theor Phys 60(2):189–193

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang X, Song Q, Liu Y et al (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26

    Article  Google Scholar 

  14. Yang X, Li C, Song Q et al (2016) Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing 207:276–286

    Article  Google Scholar 

  15. Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  16. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  17. Bagheri P, Shahrokhi M (2016) Neural network-based synchronization of uncertain chaotic systems with unknown states. Neural Comput Appl 27(4):945–952

  18. Mohammadzadeh A, Ghaemi S (2015) Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks. ISA Trans 58:318–329

    Article  Google Scholar 

  19. Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensioned chaotic systems. Phys Rev Lett 82:3042–3045

    Article  Google Scholar 

  20. Jia Q (2007) Projective synchronization of a new hyperchaotic Lorenz system. Phys Lett A 370:40–45

    Article  MATH  Google Scholar 

  21. Wang ZL (2010) Projective synchronization of hyperchaotic Lü system and Liu system. Nonlinear Dyn 59(3):455–462

    Article  MathSciNet  MATH  Google Scholar 

  22. Agrawal SK, Srivastava M, Das S (2012) Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45(6):737–752

    Article  Google Scholar 

  23. Wang X, Zhang X, Ma C (2012) Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn 69(1–2):511–517

    Article  MathSciNet  MATH  Google Scholar 

  24. Andrew LYT, Li XF, Chu YD et al (2015) A novel adaptive-impulsive synchronization of fractional-order chaotic systems. Chin Phys B 24(10):86–92

    Article  Google Scholar 

  25. Ding L (2009) Projective synchronization of fractional-order chaotic systems based on sliding mode control. Acta Phys Sin 58(6):3747–3752

    MathSciNet  MATH  Google Scholar 

  26. Bai J, Yu Y, Wang S et al (2012) Modified projective synchronization of uncertain fractional order hyperchaotic systems. Commun Nonlinear Sci Numer Simul 17(4):1921–1928

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal Real World Appl 12(2):811–816

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang YH, Xiao J, Ma ZZ (2013) Modified function projective synchronization for a class of partially linear fractional order chaotic systems. Acta Phys Sin 62(18):116–121

    Google Scholar 

  29. Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  MATH  Google Scholar 

  30. Yu J, Hu C, Jiang H et al (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  MATH  Google Scholar 

  31. Zhang R, Yang S (2013) Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn 71(1–2):269–278

    Article  MathSciNet  Google Scholar 

  32. Yin C, Dadras S, Zhong SM et al (2013) Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Appl Math Model 37(4):2469–2483

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou P, Ding R (2012) Adaptive function projective synchronization between different fractional-order chaotic systems. Indian J Phys 86(6):497–501

    Article  Google Scholar 

  34. Xi H, Li Y, Huang X (2015) Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik Int J Light Electron Opt 126(24):5346–5349

    Article  Google Scholar 

  35. Wu H, Wang L, Wang Y et al (2016) Global Mittag-Leffler projective synchronization for fractional-order neural networks: an LMI-based approach. Adv Differ Equ 2016(1):1–18

    Article  MathSciNet  Google Scholar 

  36. Wu L, Su X, Shi P (2012) Sliding mode control with bounded \({\fancyscript {L}}\)2 gain performance of Markovian jump singular time-delay systems. Automatica 48(8):1929–1933

    Article  MathSciNet  MATH  Google Scholar 

  37. Niu Y, Wang X (2009) Sliding mode control design for uncertain delay systems with partial actuator degradation. Int J Syst Sci 40(4):403–409

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin TC, Lee TY (2011) Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans Fuzzy Syst 19(4):623–635

    Article  Google Scholar 

  39. Lin TC, Lee TY, Balas VE (2011) Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos Solitons Fractals 44(10):791–801

    Article  MATH  Google Scholar 

  40. Shen H, Xu S, Lu J et al (2012) Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays. J Frankl Inst 349(5):1665–1680

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao H, Chen T, Chai T (2007) Passivity and passification for networked control systems. SIAM J Control Optim 46(4):1299–1322

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuntanapreeda S (2016) Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. Nonlinear Dyn 84(4):2505–2515

    Article  MathSciNet  MATH  Google Scholar 

  43. Song X, Xu S, Shen H (2008) Robust \(H_\infty \) control for uncertain fuzzy systems with distributed delays via output feedback controllers. Inf Sci 178(22):4341–4356

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu S, Chen T, Lam J (2003) Robust \(H_\infty \) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48(5):900–907

    Article  MATH  Google Scholar 

  45. Shen J, Lam J (2014) State feedback \(H_\infty \) control of commensurate fractional-order systems. Int J Syst Sci 45(3):363–372

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen J, Lam J (2014) \(H_\infty \) model reduction for positive fractional order systems. Asian J Control 16(2):441–450

    Article  MathSciNet  MATH  Google Scholar 

  47. Mohammadzadeh A, Ghaemi S, Kaynak O (2016) Robust H-infinity based synchronization of the fractional order chaotic systems by using new self-evolving non-singleton type-2 fuzzy neural networks. IEEE Trans Fuzzy Syst 24(6):1544–1554

  48. Mathiyalagan K, Park JH, Sakthivel R et al (2014) Robust mixed \(H_\infty \) and passive filtering for networked Markov jump systems with impulses. Signal Process 101:162–173

    Article  Google Scholar 

  49. Shen H, Wu ZG, Park JH (2015) Reliable mixed passive and \(H_\infty \) filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int J Robust Nonlinear Control 25(17):3231–3251

    Article  MathSciNet  MATH  Google Scholar 

  50. Su L, Shen H (2015) Mixed \(H_\infty \)/passive synchronization for complex dynamical networks with sampled-data control. Appl Math Comput 259:931–942

    MathSciNet  Google Scholar 

  51. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  52. Xie L (1996) Output feedback \(H_\infty \) control of systems with parameter uncertainty. Int J Control 63(4):741–750

    Article  MathSciNet  MATH  Google Scholar 

  53. Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105

    Article  Google Scholar 

  54. Gai M, Cui S, Liang S et al (2016) Frequency distributed model of Caputo derivatives and robust stability of a class of multi-variable fractional-order neural networks with uncertainties. Neurocomputing 202:91–97

    Article  Google Scholar 

  55. Cao J, Xiao M (2007) Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. IEEE Trans Neural Netw 18(2):416–430

    Article  MathSciNet  Google Scholar 

  56. Lu H (2002) Chaotic attractors in delayed neural networks. Phys Lett A 298(2):109–116

    Article  MATH  Google Scholar 

  57. Bao H, Park JH, Cao J (2016) Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw 81:16–28

    Article  Google Scholar 

  58. Wu L, Su X, Shi P (2015) Dissipativity analysis and synthesis of discrete-time T–S fuzzy stochastic systems. In: Fuzzy control systems with time-delay and stochastic perturbation. Springer, Berlin, pp 185–212

  59. Song X, Liu L, Balsera IT et al (2016) Output feedback control for fractional-order Takagi–Sugeno fuzzy systems with unmeasurable premise variables. Trans Inst Meas Control 38(10):1201–1211

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Nos. 61203047, U1604146), Science and Technology Research Project in Henan Province (Nos. 152102210273, 162102410024) and Foundation for the University Technological Innovative Talents of Henan Province (No. 18HASTIT019). The second author would like to sincerely thank Prof. Om P. Agrawal and Prof. R. Koc (Chair), Mechanical Engineering and Energy Processes, Southern Illinois University for hosting her during April 8, 2016 to April 7, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaona Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Song, X. & Balsera, I.T. Mixed \(H_\infty \)/Passive Projective Synchronization for Nonidentical Uncertain Fractional-Order Neural Networks Based on Adaptive Sliding Mode Control. Neural Process Lett 47, 443–462 (2018). https://doi.org/10.1007/s11063-017-9659-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9659-6

Keywords

Navigation