Skip to main content
Log in

Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a delayed fractional-order gene regulatory network model. Firstly, the sum of delays is chosen as the bifurcation parameter, and the conditions of the existence for Hopf bifurcations are achieved through analyzing its characteristic equation. Secondly, it is shown that the fractional order can be effectively manipulated to control the dynamics of such network, and the stability domain can be changed with different fractional orders. The fractional-order genetic network can generate a Hopf bifurcation (oscillation appears) as the sum of delays passes through some critical values. Therefore, we can achieve some desirable dynamical behaviors by choosing the appropriate fractional order. Finally, numerical simulations are carried out to illustrate the validity of our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cottone G, Paola MD, Santoro R (2010) A novel exact representation of stationary colored gaussian processes (fractional differential approach). J Phys A Math Theor 43(8):085002

    Article  MathSciNet  MATH  Google Scholar 

  2. Henry B, Wearne S (2002) Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math 62(3):870–887

    Article  MathSciNet  MATH  Google Scholar 

  3. Engheia N (1997) On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag 39(4):35–46

    Article  Google Scholar 

  4. Baleanu D (2012) Fractional dynamics and control. Springer, Berlin

    Book  Google Scholar 

  5. Djordjević VD, Jarić Fabry B, Fredberg JJ, Stamenovi D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31(6):692–699

    Article  Google Scholar 

  6. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  Google Scholar 

  7. Bar YY, Harmon D, Bivort B (2009) Attractors and democratic dynamics. Science 323(5917):1016–1017

    Article  Google Scholar 

  8. Hidde DJ (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Article  Google Scholar 

  9. Sun GQ, Wang SL, Ren Q, Jin Z, Wu YP (2015) Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci Rep 5:11246

    Article  Google Scholar 

  10. Wang QY, Perc M, Duan ZS, Chen GR (2009) Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19(2):023112

    Article  Google Scholar 

  11. Verdugo A, Rand R (2008) Hopf bifurcation in a DDE model of gene expression. Commun Nonlinear Sci Numer Simul 13(2):235–242

    Article  MathSciNet  MATH  Google Scholar 

  12. Wan AY, Zou XF (2009) Hopf bifurcation analysis for a model of genetic regulatory system with delay. J Math Anal Appl 356(2):464–476

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu CJ, Zhang QM, Wu YS (2016) Bifurcation analysis in a three-neuron artificial neural network model with distributed delays. Neural Process Lett 44(2):343–373

    Article  Google Scholar 

  14. Tian XH, Xu R (2016) Hopf bifurcation analysis of a reaction-diffusion neural network with time delay in leakage terms and distributed delays. Neural Process Lett 43(1):173–193

    Article  Google Scholar 

  15. Xu CJ, Shao YF, Li PL (2015) Bifurcation behavior for an electronic neural network model with two different delays. Neural Process Lett 42(3):541–561

    Article  Google Scholar 

  16. Abdelouahab MS, Hamri NE, Wang JW (2012) Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn 69(1):275–284

    Article  MathSciNet  MATH  Google Scholar 

  17. Li X, Wu RC (2014) Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn 78(1):279–288

    Article  MathSciNet  MATH  Google Scholar 

  18. Tian JL, Yu YG, Wang H (2014) Stability and bifurcation of two kinds of three-dimensional fractional Lotka–Volterra systems. Math Probl Eng 2014:695871

    MathSciNet  Google Scholar 

  19. Xiao M, Zheng WX, Jiang GP, Cao JD (2015) Undamped oscillations generated by hopf bifurcations in fractional-order recurrent neural networks with caputo derivative. IEEE Trans Neural Netw Learn Syst 26(12):3201–3214

    Article  MathSciNet  Google Scholar 

  20. Chen GQ, Friedman EG (2005) An RLC interconnect model based on fourier analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 24(2):170–183

    Article  Google Scholar 

  21. Jenson V, Jeffreys G (1977) Mathematical methods in chemical engineering. Academic Press, New York

    MATH  Google Scholar 

  22. Wu X, Eshete M (2011) Bifurcation analysis for a model of gene expression with delays Commun. Nonlinear Sci Numer Simul 16:1073–1088

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang T, Song Y, Zhang H (2012) The stability and Hopf bifurcation analysis of a gene expression model. J Math Anal Appl 395:103–113

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao J, Jiang H (2013) Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay. Neurocomputing 99:381–389

    Article  Google Scholar 

  25. Song Y, Han Y, Zhang Y (2014) Stability and Hopf bifurcation in a model of gene expression with distributed time delays. Appl Math Comput 243:398–412

    MathSciNet  MATH  Google Scholar 

  26. Zang H, Zhang T, Zhang Y (2015) Bifurcation analysis of a mathematical model for genetic regulatory network with time delays. Appl Math Comput 260:204–226

    MathSciNet  Google Scholar 

  27. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji RR, Ding L, Yan XM, Xin M (2010) Modelling gene regulatory network by fractional order differential equations. In: IEEE fifth international conference on BIC-TA, pp 431–434

  29. Ren FL, Cao F, Cao JD (2015) Mittag-leffler stability and generalized mittag- leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190

    Article  Google Scholar 

  30. Zhang YQ, Pu YF, Zhang HS, Cong Y, Zhou JL (2014) An extended fractional Kalman filter for inferring gene regulatory networks using time-series data. Chemom Intell Lab 138:57–63

    Article  Google Scholar 

  31. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  32. Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somito genesis oscillator. Curr Biol 13:1398–1408

    Article  Google Scholar 

  33. Chen L, Aihara K (2002) Stability of genetic regulatory networks with time delay delay. IEEE Trans Circuits Syst I Fundam Theory Appl 49:602–608

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao M, Cao JD (2008) Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Math Biosci 215:55–63

    Article  MathSciNet  MATH  Google Scholar 

  35. Zamore P, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61573194), Six Talent Peaks High Level Project of Jiangsu Province (2014-ZNDW-004) and Science Foundation of Nanjing University of Posts and Telecommunications (NY213095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Xiao, M. & Tao, B. Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays. Neural Process Lett 47, 1285–1296 (2018). https://doi.org/10.1007/s11063-017-9690-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9690-7

Keywords

Mathematics Subject Classification

Navigation