Skip to main content
Log in

Stochastic Support Vector Machine for Classifying and Regression of Random Variables

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Support vector machine (SVM) is a supervised machine learning method which can be used for both classification and regression models. In this paper, we introduce a new model of SVM and support vector regression which any of training samples containing inputs and outputs are considered the random variables with known or unknown probability functions. In this new models, we need the mathematical expectation for any of training samples but when these are unknown we apply nonparametric statistical methods. Also constraints occurrence have probability function which helps obtain maximum margin and achieve robustness. We obtain the optimal separating hyperplane and the optimal hyperplane regression by solving the quadratic optimization problems. Finally the proposed methods are illustrated by several experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vapnik V (1998) The nature of statistical learning theory. Springer-Verlag, New York

    MATH  Google Scholar 

  2. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161

    Google Scholar 

  3. Suykens J, VanGestel T, DeBrabanter J, DeMoor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    Book  Google Scholar 

  4. Li H, Yang J, Zhang G, Fan B (2013) Probabilistic support vector machines for classification of noise affected data. Inf Sci 221:60–71

    Article  Google Scholar 

  5. Gao JB, Gunn SR, Harris CJ, Brown M (2002) A probabilistic framework for SVM regression and error bar estimation. Mach Learn 46:71–89

    Article  MATH  Google Scholar 

  6. Jinglin Y, Li HX, Yong H (2011) A probabilistic SVM based decision system for pain diagnosis. Expert Syst Appl 38:9346–9351

    Article  Google Scholar 

  7. Trafalis TB, Gilbert RC (2006) Robust classification and regression using support vector machines. Eur J Oper Res 173:893–909

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal A, Bhadra S, Bhattacharyya Ch, Nath JS (2011) Chance constrained uncertain classification via robust optimization. Math Progr 127:145–173

    Article  MathSciNet  MATH  Google Scholar 

  9. Trafalis TB, Alwazzi SA (2007) Support vector regression with noisy data: a second order cone programming approach. Int J Gen Syst 36:237–250

    Article  MathSciNet  MATH  Google Scholar 

  10. Lobo M, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284:193–228

    Article  MathSciNet  MATH  Google Scholar 

  11. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Opt 2:575–601

    Article  MathSciNet  MATH  Google Scholar 

  12. Shivaswamy PK, Bhattacharyya Ch, Smola AJ (2006) Second order cone programming approaches for handling missing and uncertain data. J Mach Learn Res 7:1283–1314

    MathSciNet  MATH  Google Scholar 

  13. Carrizosa E, Gordillo JE, Plastria F (2008) Kernel support vector regression with imprecise output. MOSI, Vrije Univ Brussel, Brussel, Belgium, Technical Report, Dept

  14. Park WJ, Kil RM (2009) Pattern classification with class probability output network. IEEE Trans Neural Netw 20:1659–1673

    Article  Google Scholar 

  15. Kim S, Yua Z, Kil RM, Lee M (2014) Deep learning of support vector machines with class probability output networks. Neural Netw 64:19–28

    Article  Google Scholar 

  16. Thi HAL, Vo XT, Dinh TP (2014) Feature selection for linear SVMs under uncertain data: robust optimization based on difference of convex functions algorithms. Neural Netw 59:36–50

    Article  MATH  Google Scholar 

  17. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  18. Sun Y, Yuan Y, Wang G (2014) Extreme learning machine for classification over uncertain data. Neurocomputing 128:500–506

    Article  Google Scholar 

  19. Sadoghi Yazdi H, Effati S, Saberi Z (2007) The probabilistic constraints in the support vector machine. Appl Math Comput 194:467–479

    MathSciNet  MATH  Google Scholar 

  20. Lanckriet GRG, Ghaoui LE, Bhattacharyya Ch, Jordan MI (2002) A robust minimax approach to classification. J Mach Learn Res 3:555–582

    MathSciNet  MATH  Google Scholar 

  21. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  22. Barnett NS, Dragomir SS (2002) Some inequalities for probability, expectation and variance of random variables defined over a finite interval. Comput Math Appl 43:1319–1357

    Article  MathSciNet  MATH  Google Scholar 

  23. Karr AF (1992) Probability. Springer, New York

    MATH  Google Scholar 

  24. http://www.wisostat.uni-koeln.de/28969.html?&L=1

  25. Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml/machine-learning-databases/

  26. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. CRC Press. http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

  27. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Effati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaszade, M., Effati, S. Stochastic Support Vector Machine for Classifying and Regression of Random Variables. Neural Process Lett 48, 1–29 (2018). https://doi.org/10.1007/s11063-017-9697-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9697-0

Keywords