Skip to main content

Advertisement

Log in

Robust Low Rank Subspace Segmentation via Joint \(\ell _{21} \)-Norm Minimization

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In the real world, data samples are often contaminated. Using these contaminated data samples for subspace segmentation usually leads to segmentation results distorted. To remove error, many existing subspace segmentation algorithms directly use different regularization to model the error of the corresponding type in the objective. However, the priori of errors is difficult to obtain in practice, which leads to the degradation of segmentation performance. In this work, we propose to jointly learn the representation matrix and eliminate the effect of errors in the low rank projection spaces via joint the nuclear norm and \(\ell _{21} \)-norm minimization on the representation matrix for subspace segmentation, termed as robust low rank subspace segmentation via joint \(\ell _{21} \)-norm minimization (LR-L21). Numerical experiments indicate that the proposed method can effectively deal with different types of errors possibly existing in data, even without the priori of errors. A simple and efficient algorithm is presented based on the alternating direction method, which is convergent. Extensive experiments on three real datasets demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23:643–660

    Article  Google Scholar 

  2. Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR

  3. Smith CM, Finger JH, Hayamizu TF, McCright IJ, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2007) The mouse gene expression database (GXD): 2007 update. Nucleic Acids Res 35(Database issue):D618–D623

    Article  Google Scholar 

  4. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (2005) Automatic subspace clustering of high dimensional data. Data Min Knowl Discov 11:5–33

    Article  MathSciNet  Google Scholar 

  5. Ng A, Weiss Y, Jordan M (2001) On spectral clustering: analysis and an algorithm. In: Neural information processing systems, pp 849–856

  6. Zelnik-Manor L, Irani M (2003) Degeneracies, dependencies and their implications in multi-body and multi-sequence factorization. In: CVPR

  7. Yan J, Pollefeys M (2006) A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European conference on computer vision, pp 94–106

  8. Chen G, Lerman G (2009) Spectral curvature clustering (SCC). Int J Comput Vis 81:317–330

    Article  Google Scholar 

  9. Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: IEEE computer vision, pp 347–360

  10. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35:171–184

    Article  Google Scholar 

  11. Vidal R, Favaro P (2014) Low rank subspace clustering. IEEE Pattern Recognit Lett 43:47–61

    Article  Google Scholar 

  12. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Tran Pattern Anal Mach Intell 35:2765–2781

    Article  Google Scholar 

  13. Rao S, Tron R, Vidal R, Ma Y (2010) Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans Pattern Anal Mach Intell 32:1832–1845

    Article  Google Scholar 

  14. Candes E, Plan Y (2010) Matrix completion with noise. IEEE 98:925–936

    Article  Google Scholar 

  15. Candés E, Li X, Ma Y, Wright J (2011) Robust principal component analysis. In: ACM, p 5811

  16. Xu H, Caramanis C, Sanghavi S (2010) Robust PCA via outlier pursuit. Syst Adv Neural Inf Process Syst 23:2496–2504

    MATH  Google Scholar 

  17. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in neural information processing systems, pp 612–620

  18. Li F-F, Fergus R, Perona P (2004) Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR

  19. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu J, Hong R, Wang M et al (2014) Image clustering based on sparse patch alignment framework. Pattern Recognit 47(11):3512–3519

    Article  MATH  Google Scholar 

  21. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning

  22. Wang J, Shi D, Cheng D et al (2016) LRSR: low-rank-sparse representation for subspace clustering. Neurocomputing 214:1026–1037

    Article  Google Scholar 

  23. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR

  24. Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: CVPR, pp 277–286

  25. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: CVPR, pp 3918–3927

  26. Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput Math Appl 2:17–40

    Article  MATH  Google Scholar 

  27. Lin Z, Chen M, Ma Y (2009) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215

  28. Ding C, Zhou D, He X et al. (2006) \(R_{1}\)-PCA: rotational invariant \(\ell _{21} \)-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 281–288

  29. Yang Y, Shen HT, Ma Z et al (2011) \(\ell _{21} \)-norm regularized discriminative feature selection for unsupervised learning. IJCAI Proc Int Joint Conf Artif Intell 22(1):1589–1594

    Google Scholar 

  30. Zhang J, Yu J, Wan J et al (2015) \(\ell _{21} \) Norm regularized fisher criterion for optimal feature selection. Neurocomputing 166:455–463

    Article  Google Scholar 

  31. Nie F, Huang H, Cai X et al. (2010) Efficient and robust feature selection via joint \(\ell _{21} \)-norms minimization. In: Advances in neural information processing systems, pp 1813–1821

  32. Luo M, Nie F, Chang X et al (2017) Avoiding optimal mean \(\ell _{21} \)-norm maximization-based robust PCA for reconstruction. Neural Comput 29(4):1124–1150

    Article  Google Scholar 

  33. Costeira J, Kanade T (1998) A multibody factorization method for independently moving objects. Comput Vis 29:159–179

    Article  Google Scholar 

  34. Cai J, Candés E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM Optim 20:1956–1982

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is jointly supported by the 111 Project of Chinese Ministry of Education under Grant B12018 and the National Natural Science Foundation of China under Grant 61373055; 61672265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wu, XJ. Robust Low Rank Subspace Segmentation via Joint \(\ell _{21} \)-Norm Minimization. Neural Process Lett 48, 299–312 (2018). https://doi.org/10.1007/s11063-017-9715-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9715-2

Keywords