Skip to main content
Log in

Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction–Diffusion Terms and Markovian Jumping Parameters

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper investigates robust exponential synchronization for stochastic delayed neural networks with reaction–diffusion terms and Markovian jumping parameters driven by infinite dimensional Wiener processes. The novelty of this paper lives in the use of a new Lyapunov–Krasovskii functional and Poincaré inequality to present some criteria for robust exponential synchronization in terms of linear matrix inequalities (LMIs) and matrix measure under Robin boundary conditions. Finally, two numerical examples are provided to illustrate the effectiveness of the easily verifiable synchronization LMIs in MATLAB toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arbi A, Chérif F, Aouiti C, Touati A (2016) Dynamics of new class of hopfield neural networks with time-varying and distributed delays. Acta Math Sci 36(3):891–912

    Article  MathSciNet  Google Scholar 

  2. Arslan E, Ali MS, Saravanan S (2017) Finite-time stability of stochastic cohen-grossberg neural networks with markovian jumping parameters and distributed time-varying delays. Neural Process Lett 46(1):71–81

    Article  Google Scholar 

  3. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  Google Scholar 

  4. Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial bam neural networks with time delays. Neural Netw 53:165–172

    Article  Google Scholar 

  5. Chen WH, Luo S, Zheng WX (2017) Generating globally stable periodic solutions of delayed neural networks with periodic coefficients via impulsive control. IEEE Trans Cybern 47(7):1590–1603

    Article  Google Scholar 

  6. Gan Q (2012) Global exponential synchronization of generalized stochastic neural networks with mixed time-varying delays and reaction–diffusion terms. Neurocomputing 89:96–105

    Article  Google Scholar 

  7. Gawarecki L, Mandrekar V (2011) Stochastic differential equations in infinite dimensions: with applications to stochastic partial differential equations. Springer, Berlin

    Book  Google Scholar 

  8. Han W, Kao Y, Wang L (2011) Global exponential robust stability of static interval neural networks with s-type distributed delays. J Frankl Inst 348(8):2072–2081

    Article  MathSciNet  Google Scholar 

  9. He W, Cao J (2009) Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn 55(1):55–65

    Article  MathSciNet  Google Scholar 

  10. Kao Y, Gao C, Han W (2010) Global exponential robust stability of reaction–diffusion interval neural networks with continuously distributed delays. Neural Comput Appl 19(6):867–873

    Article  Google Scholar 

  11. Kao Y, Wang C, Zhang L (2013) Delay-dependent robust exponential stability of impulsive Markovian jumping reaction-diffusion Cohen–Grossberg neural networks. Neural Process Lett 38(3):321–346

    Article  Google Scholar 

  12. Li H, Chen G, Huang T, Dong Z (2017) High-performance consensus control in networked systems with limited bandwidth communication and time-varying directed topologies. IEEE Trans Neural Netw Learn Syst 28(5):1043–1054

    Article  Google Scholar 

  13. Li H, Liao X, Chen G, Hill DJ, Dong Z, Huang T (2015) Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Netw 66:1–10

    Article  Google Scholar 

  14. Li H, Liao X, Huang T, Zhu W (2015) Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans Autom Control 60(7):1998–2003

    Article  MathSciNet  Google Scholar 

  15. Li H, Liao X, Huang T, Zhu W, Liu Y (2015) Second-order global consensus in multiagent networks with random directional link failure. IEEE Trans Neural Netw Learn Syst 26(3):565–575

    Article  MathSciNet  Google Scholar 

  16. Liang X, Wang L, Wang Y, Wang R (2016) Dynamical behavior of delayed reaction–diffusion hopfield neural networks driven by infinite dimensional Wiener processes. IEEE Trans Neural Netw Learn Syst 27(9):1816–1826

    Article  MathSciNet  Google Scholar 

  17. Mei J, Jiang M, Wang B, Liu Q, Xu W, Liao T (2014) Exponential \(p\)-synchronization of non-autonomous cohen-grossberg neural networks with reaction–diffusion terms via periodically intermittent control. Neural Process Lett 40(2):103–126

    Article  Google Scholar 

  18. Park MJ, Kwon OM, Park JH, Lee SM, Cha EJ (2011) Synchronization criteria for coupled hopfield neural networks with time-varying delays. Chin Phys B 20(11):110504

    Article  Google Scholar 

  19. Rakkiyappan R, Chandrasekar A, Park JH, Kwon OM (2014) Exponential synchronization criteria for Markovian jumping neural networks with time-varying delays and sampled-data control. Nonlinear Anal Hybrid Syst 14:16–37

    Article  MathSciNet  Google Scholar 

  20. Shen B, Wang Z, Liu X (2012) Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans Autom Control 57(10):2644–2650

    Article  MathSciNet  Google Scholar 

  21. Shen H, Huang X, Zhou J, Wang Z (2012) Global exponential estimates for uncertain markovian jump neural networks with reaction–diffusion terms. Nonlinear Dyn 69(1):473–486

    Article  MathSciNet  Google Scholar 

  22. Song Q, Huang T (2015) Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width. Neurocomputing 154:61–69

    Article  Google Scholar 

  23. Song Q, Zhao Z (2014) Cluster, local and complete synchronization in coupled neural networks with mixed delays and nonlinear coupling. Neural Comput Appl 24:1101–1113

    Article  Google Scholar 

  24. Steur E, Tyukin I, Nijmeijer H (2009) Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Phys D 238(21):2119–2128

    Article  MathSciNet  Google Scholar 

  25. Temam R (2012) Infinite-dimensional dynamical systems in mechanics and physics. Springer, Berlin

    Google Scholar 

  26. Wang L, Zhang Z, Wang Y (2008) Stochastic exponential stability of the delayed reaction–diffusion recurrent neural networks with markovian jumping parameters. Phys Lett A 372(18):3201–3209

    Article  MathSciNet  Google Scholar 

  27. Wang Z, Liu Y, Yu L, Liu X (2006) Exponential stability of delayed recurrent neural networks with markovian jumping parameters. Phys Lett A 356(4):346–352

    Article  Google Scholar 

  28. Wei T, Wang L, Wang Y (2017) Existence, uniqueness and stability of mild solutions to stochastic reaction–diffusion cohen-grossberg neural networks with delays and Wiener processes. Neurocomputing 239:19–27

    Article  Google Scholar 

  29. Wu Y, Cao J, Li Q, Alsaedi A, Alsaadi FE (2017) Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching. Neural Netw 85:128–139

    Article  Google Scholar 

  30. Wu ZG, Shi P, Su H, Chu J (2013) Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data. IEEE Trans Cybern 43(6):1796–1806

    Article  Google Scholar 

  31. Yang X, Cao J, Lu J (2012) Synchronization of markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans Neural Netw Learn Syst 23(1):60–71

    Article  Google Scholar 

  32. Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I 60(2):363–376

    Article  MathSciNet  Google Scholar 

  33. Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51(5):3488–3510

    Article  MathSciNet  Google Scholar 

  34. Yang Z, Zhou W, Huang T (2014) Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays. Cogn Neurodyn 8(1):47–54

    Article  Google Scholar 

  35. Zhang C, Deng F, Peng Y, Zhang B (2015) Adaptive synchronization of Cohen–Grossberg neural network with mixed time-varying delays and stochastic perturbation. Appl Math Comput 269:792–801

    MathSciNet  Google Scholar 

  36. Zhang W, Li J, Ding C, Xing K (2017) \(p\)th moment exponential stability of hybrid delayed reaction-diffusion Cohen–Grossberg neural networks. Neural Process Lett 46(1):83–111

    Article  Google Scholar 

  37. Zhou W, Teng L, Xu D (2015) Mean-square exponentially input-to-state stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 153:54–61

    Article  Google Scholar 

  38. Zhu Q, Cao J, Hayat T, Alsaadi F (2015) Robust stability of Markovian jump stochastic neural networks with time delays in the leakage terms. Neural Process Lett 41(1):1–27

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their insightful and constructive comments. The work of authors was partly supported by National Natural Science Foundation of China (Nos. 11771014, 31772844, 31302182, 11171374) and Natural Science Foundation of Shandong Province (No. ZR2011AZ001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangfan Wang or Linshan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Wang, Y. & Wang, L. Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction–Diffusion Terms and Markovian Jumping Parameters. Neural Process Lett 48, 979–994 (2018). https://doi.org/10.1007/s11063-017-9756-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9756-6

Keywords

Mathematics Subject Classification