Skip to main content
Log in

Feature Extraction Using Fractional-Order Embedding Direct Linear Discriminant Analysis

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel LDA-based dimensionality reduction method called fractional-order embedding direct LDA (FEDLDA) is proposed. More specifically, we redefine the fractional-order between-class and within-class scatter matrices which can significantly reduce the deviation of sample covariance matrices caused by the noise disturbance and limited number of training samples; then the novel feature extraction criterion based on the direct LDA (DLDA) and the idea of fractional-order embedding is applied. Experiments on AT&T, Yale and AR face image databases are performed to test and evaluate the effectiveness of the proposed algorithms. Extensive experimental results show that FEDLDA outperforms DLDA and other closely related methods in terms of classification accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.uk.research.att.com/facedatabase.html.

References

  1. Cao B, Shen D, Sun JT, Yang Q, Chen Z (2007) Feature selection in a kernel space. In: International conference on machine learning (ICML) Oregon, USA, pp 121–128

  2. Truk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3(1):71–86

    Article  Google Scholar 

  3. Fukunaga K (1990) Introduction to statistical pattern classification. Academic Press, San Diego

    MATH  Google Scholar 

  4. Shashua A (1999) On the relationship between the support vector machine for classification and sparsified Fisher’s linear discriminant. Neural Process Lett 9(2):129–139

    Article  Google Scholar 

  5. Sharma A, Kuldip KK (2008) A gradient linear discriminant analysis for small sample sized problem. Neural Process Lett 27(1):17–24

    Article  Google Scholar 

  6. Tao D, Li X, Wu X et al (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 31(2):260–274

    Article  Google Scholar 

  7. Sugiyama M (2006) Local Fisher discriminant analysis for supervised dimensionality reduction. In: Proceedings of the 23rd international conference on machine learning, AMC Press

  8. Yang J, Yang JY, Frangi AF (2003) Combined Fisherfaces framework. Image Vis Comput 21(12):1037–1044

    Article  Google Scholar 

  9. Park CH, Park H (2008) A comparision of generalized linear discriminant analysis algorithms. Pattern Recognit 41:1083–1097

    Article  Google Scholar 

  10. Howland P, Park H (2004) Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans Pattern Anal Mach Intell 26(8):995–1006

    Article  Google Scholar 

  11. Howland P, Jeon M, Park H (2003) Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J Matrix Anal Appl 25(1):165–179

    Article  MathSciNet  Google Scholar 

  12. Chen L, Liao HM, Ko M, Lin J, Yu G (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33:1713–1726

    Article  Google Scholar 

  13. Ye JP, Xiong T (2006) Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. J Mach Learn Res 7:1183–1204

    MathSciNet  MATH  Google Scholar 

  14. Ye J, Janardan R, Li Q, Park H (2004a) Feature extraction via generalized uncorrelated linear discriminant analysis. In: Proceedings of international conference on machine learning, pp 895–902

  15. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    Article  MathSciNet  Google Scholar 

  16. Bosaghzadeh A, Moujahid A, Dornaika F (2013) Parameterless local discriminant embedding. Neural Process Lett 38(1):53–67

    Article  Google Scholar 

  17. Song D, Tao D (2009) Discriminative geometry preserving projections. In: 16th IEEE international conference on image processing (ICIP), pp 2457–2460

  18. Zhang T, Tao D, Yang J (2008) Discriminative locality alignment. In: European conference on computer vision. Springer, Berlin, pp 725–738

    Google Scholar 

  19. Zhang L, Zhang L, Tao D et al (2013) Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction. IEEE Trans Geosci Remote Sens 51(1):242–256

    Article  Google Scholar 

  20. Hendrikse A, Spreeuwers L, Veldhuis R (2009) A bootstrap approach to eigenvalue correction. In: Proceedings of the 2009 ninth IEEE international conference on data mining, pp 818–823

  21. Yuan Y-H, Sun Q-S (2013) Fractional-order embedding multiset canonical correlations with applications to multi-faeture fusion and recognition. Neurocomputing 122:229–238

    Article  Google Scholar 

  22. Yuan Y-H, Sun Q-S, Ge H-W (2014) Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognit 47:1411–1424

    Article  Google Scholar 

  23. Pu Y-F, Zhou J-L, Yuan X (2010) Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process 19(2):491–511

    Article  MathSciNet  Google Scholar 

  24. Pan W, Qin K, Chen Y (2009) An adaptable-multilayer fractional Fourier transform approach for image registration. IEEE Trans Pattern Anal Mach Intell 31(3):400–413

    Article  Google Scholar 

  25. Liu J, Chen S, Tan X (2008) Fractional order singular value decomposition representation for face recognition. Pattern Recognit 41(1):378–395

    Article  Google Scholar 

  26. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognit 34:2067–2070

    Article  Google Scholar 

  27. Hendrikse A, Veldhuis R, Spreeuwers L (2008) Eigenvalue correction results in face recognition. In: Proceedings of the 29th symposium on information theory in the Benelux, pp 27–35

  28. Xu P, Brock GN, Parrish RS (2009) Modified linear discriminant analysis approaches for classification of high-dimensional microarray data. Comput Stat Data Anal 53(5):1674–1687

    Article  MathSciNet  Google Scholar 

  29. Ji H, Sun Q, Xiao S, Ji Z (2017) Fractional-order embedding supervised canonical correlations analysis with applications to feature extraction and recognition. Neural Process Lett 45(1):279–297

    Article  Google Scholar 

  30. Yang J, Fan LY (2014) A novel indefinite kernel dimensionality reduction algorithm: weighted generalized indefinite kernel discriminant analysis. Neural Process Lett 40(3):301–313

    Article  Google Scholar 

  31. Lu G, Wang Y, Zou J (2011) Graph maximum margin criterion for face recognition. Neural Process Lett 44(2):387–405

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61673220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, QS. & Yuan, YH. Feature Extraction Using Fractional-Order Embedding Direct Linear Discriminant Analysis. Neural Process Lett 48, 1583–1595 (2018). https://doi.org/10.1007/s11063-018-9780-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9780-1

Keywords

Navigation