Skip to main content
Log in

Global Mittag-Leffler Synchronization for Fractional-Order BAM Neural Networks with Impulses and Multiple Variable Delays via Delayed-Feedback Control Strategy

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is concerned with the global Mittag-Leffler synchronization schemes for the Caputo type fractional-order BAM neural networks with multiple time-varying delays and impulsive effects. Based on the delayed-feedback control strategy and Lyapunov functional approach, the sufficient conditions are established to ensure the global Mittag-Leffler synchronization, which are described as the algebraic inequalities associated with the network parameters. The control gain constants can be searched in a wider range following the proposed synchronization conditions. The obtained results are more general and less conservative. A numerical example is also presented to illustrate the feasibility and effectiveness of the theoretical results based on the modified predictor–corrector algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  2. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  3. Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C Mech Syst Mach Elem Mach Elem Manuf 42:825–837

    Google Scholar 

  4. Laskin N (2000) Fractional market dynamics. Phys A 287(3–4):482–492

    Article  MathSciNet  Google Scholar 

  5. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  6. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu D (2012) Fractional dynamics and control. Springer, Berlin

    Book  Google Scholar 

  8. Magin R (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    Article  MathSciNet  MATH  Google Scholar 

  9. Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59(5):1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu S, Wu X, Zhang YJ, Yang R (2017) Asymptotical stability of Riemann–Liouville fractional neutral systems. Appl Math Lett 86(1):65–71

    MathSciNet  MATH  Google Scholar 

  11. Duarte-Mermoud MA, Aguila-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22(1–3):650–659

    Article  MathSciNet  MATH  Google Scholar 

  12. Li HL, Jiang YL, Wang ZL, Zhang L, Teng ZD (2015) Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network. Appl Math Comput 270:269–277

    MathSciNet  MATH  Google Scholar 

  13. Wu AL, Zeng ZG, Song XG (2016) Global Mittag–Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neurocomputing 177:489–496

    Article  Google Scholar 

  14. Li XD, Zhang XI, Song SJ (2017) Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 76:378–382

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu S, Li XY, Jiang W, Zhou XF (2012) Mittag–Leffler stability of nonlinear fractional neutral singular systems. Commun Nonlinear Sci Numer Simul 17(10):3961–3966

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia RW (2017) Finite-time stability of a class of fuzzy cellular neural networks with multi-proportional delays. Fuzzy Set Syst 319:70–80

    Article  MathSciNet  MATH  Google Scholar 

  17. Aouiti C, M’Hamdi MS, Cao JD, Alsaedi A (2017) Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays. Neural Process Lett 45(2):615–648

    Article  Google Scholar 

  18. Wang ZS, Liu L, Shan QH, Zhang HG (2017) Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst 26(10):2589–2595

    Article  MathSciNet  Google Scholar 

  19. Gong WQ, Liang JL, Cao JD (2015) Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays. Neural Netw 70:81–89

    Article  MATH  Google Scholar 

  20. Xiong WJ, Shi YB, Cao JD (2017) Stability analysis of two-dimensional neutral-type Cohen–Grossberg BAM neural networks. Neural Comput Appl 28(4):703–716

    Article  Google Scholar 

  21. Wang F, Yang YQ, Xu XY, Li L (2017) Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput Appl 28(2):345–352

    Article  Google Scholar 

  22. Song QK, Yan H, Zhao ZJ, Liu YR (2016) Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. Neural Netw 79:108–116

    Article  MATH  Google Scholar 

  23. Gong WQ, Liang JL, Zhang CJ, Cao JD (2016) Nonlinear measure approach for the stability analysis of complex-valued neural networks. Neural Process Lett 44(2):539–554

    Article  Google Scholar 

  24. Song QK, Shu HQ, Zhao ZJ, Liu YR, Alsaadie FE (2017) Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 244:33–41

    Article  Google Scholar 

  25. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26(23):4947–4960

    Article  Google Scholar 

  26. Song C, Cao JD (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498

    Article  Google Scholar 

  27. Zhang H, Ye RY, Cao JD, Alsaedi A (2017) Delay-independent stability of Riemann-Liouville fractional neutral-type delayed neural networks. Neural Process Lett. https://doi.org/10.1007/s11063-017-9658-7

    Article  Google Scholar 

  28. Ding XS, Cao JD, Zhao X, Alsaadi FE (2017) Finite-time stability of fractional-order complex-valued neural networks with time delays. Neural Process Lett 46(2):561–580

    Article  Google Scholar 

  29. Li RX, Cao JD, Alsaedi A, Alsaadi FE (2017) Stability analysis of fractional-order delayed neural networks. Nonlinear Anal Model Control 22(4):505–520

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang H, Ye RY, Cao JD, Alsaedi A (2017) Existence and globally asymptotic stability of equilibrium solution for fractional-order hybrid BAM neural networks with distributed delays and impulses. Complexity 2017:1–13

    MathSciNet  MATH  Google Scholar 

  31. Zhang H, Ye RY, Liu S, Cao JD, Alsaedi A, Li XD (2018) LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays. Int J Syst Sci 49(3):537–545

    Article  MathSciNet  MATH  Google Scholar 

  32. Stamova I (2014) Global Mittag–Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77(4):1251–1260

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang XS, Cao JD, Liang JL (2017) Exponential synchronization of memristive neural networks with delays: interval matrix method. IEEE Trans Neural Netw Learn Syst 28(8):1878–1888

    Article  MathSciNet  Google Scholar 

  34. Li XF, Fang JA, Li HY (2017) Exponential synchronization of memristive chaotic recurrent neural networks via alternate output feedback control. Asian J Control. https://doi.org/10.1002/asjc.1562

    Article  MATH  Google Scholar 

  35. Wu EL, Yang XS (2016) Adaptive synchronization of coupled nonidentical chaotic systems with complex variables and stochastic perturbations. Nonlinear Dyn 84(1):261–269

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu YY, Cao JD, Li QB, Alsaedi A, Alsaadi FE (2017) Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching. Neural Netw 85:128–139

    Article  Google Scholar 

  37. Zhou C, Zhang WL, Yang XS, Xu C, Feng JW (2017) Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46(1):271–291

    Article  Google Scholar 

  38. Yang XS, Lam J, Ho DWC, Feng ZG (2017) Fixed-time synchronization of complex networks with impulsive effects via non-chattering control. IEEE Trans Automat Control 62(11):5511–5521

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu AH, Cao JD, Hu MF, Guo LX (2016) Distributed control of cluster synchronisation in networks with randomly occurring non-linearities. Int J Syst Sci 47(11):2588–2597

    Article  MathSciNet  MATH  Google Scholar 

  40. He WL, Qian F, Cao JD (2017) Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Netw 85:1–9

    Article  Google Scholar 

  41. Xiong WJ, Zhang D, Cao JD (2017) Impulsive synchronisation of singular hybrid coupled networks with time-varying nonlinear perturbation. Int J Syst Sci 48(2):417–424

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen JJ, Zeng ZG, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  43. Ding ZX, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105

    Article  MATH  Google Scholar 

  44. Wu HQ, Wang LF, Niu PF, Wang Y (2017) Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy. Neurocomputing 235:264–273

    Article  Google Scholar 

  45. Zheng MW, Li LX, Peng HP, Xiao JH, Yang YX, Zhao H (2017) Finite-time projective synchronization of memristor-based delay fractional-order neural networks. Nonlinear Dyn 89(4):2641–2655

    Article  MathSciNet  MATH  Google Scholar 

  46. Bao HB, Park JH, Cao JD (2015) Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn 82(3):1343–1354

    Article  MathSciNet  MATH  Google Scholar 

  47. Rajivganthi C, Rihan FA, Lakshmanan S, Rakkiyappan R, Muthukumar P (2016) Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives. Complexity 21:412–426

    Article  MathSciNet  Google Scholar 

  48. Wang F, Yang YQ, Hu MF, Xu XY (2015) Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control. Phys A 434:134–143

    Article  MathSciNet  MATH  Google Scholar 

  49. Bao HB, Park JH, Cao JD (2016) Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw 81:16–28

    Article  MATH  Google Scholar 

  50. Gu YJ, Yu YG, Wang H (2016) Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J Frankl Inst 353(15):3657–3684

    Article  MathSciNet  MATH  Google Scholar 

  51. Yan JR, Shen JH (1999) Impulsive stabilization of impulsive functional differential equations by Lyapunov–Razumikhin functions. Nonlinear Anal Theory Methods Appl 37(2):245–255

    Article  MathSciNet  MATH  Google Scholar 

  52. Bhalekar S, Daftardar-Gejji V (2011) Apredictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J Fract Calc Appl 1(5):1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhang.

Additional information

This work is jointly supported by the National Natural Science Fund of China (11301308, 61573096, 61272530, 61374183), the Fund of Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (BM2017002), the 333 Engineering Fund of Jiangsu Province of China (BRA2015286), the Natural Science Fund of Anhui Province of China (1608085MA14), the Key Project of Natural Science Research of Anhui Higher Education Institutions of China (gxyqZD2016205, KJ2015A152), and the Natural Science Youth Fund of Jiangsu Province of China (BK20160660).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Liu, X., Zhang, H. et al. Global Mittag-Leffler Synchronization for Fractional-Order BAM Neural Networks with Impulses and Multiple Variable Delays via Delayed-Feedback Control Strategy. Neural Process Lett 49, 1–18 (2019). https://doi.org/10.1007/s11063-018-9801-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9801-0

Keywords

Navigation