Skip to main content
Log in

EEG Emotion Recognition Based on Graph Regularized Sparse Linear Regression

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel regression model, called graph regularized sparse linear regression (GRSLR), is proposed to deal with EEG emotion recognition problem. GRSLR extends the conventional linear regression method by imposing a graph regularization and a sparse regularization on the transform matrix of linear regression, such that it is able to simultaneously cope with sparse transform matrix learning while preserve the intrinsic manifold of the data samples. To detailed discuss the EEG emotion recognition, we collect a set of 14 subjects EEG emotion data and provide the experiment results on different features. To evaluate the proposed GRSLR model, we conduct experiments on the SEED database and RCLS database. The experimental results show that the proposed algorithm GRSLR is superior to the classic baselines. The RCLS database is made publicly available and other researchers could use it to test their own emotion recognition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://aip.seu.edu.cn.

References

  1. Picard RW (1997) Affective computing, vol 252. MIT Press, Cambridge

    Google Scholar 

  2. Lotfi E, Akbarzadeh-T M-R (2014) Practical emotional neural networks. Neural Netw 59:61–72

    Article  Google Scholar 

  3. Britton JC, Phan KL, Taylor SF, Welsh RC, Berridge KC, Liberzon I (2006) Neural correlates of social and nonsocial emotions: an fMRi study. Neuroimage 31(1):397–409

    Article  Google Scholar 

  4. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93

    Article  Google Scholar 

  5. Lindquist KA, Barrett LF (2012) A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn Sci 16(11):533–540

    Article  Google Scholar 

  6. Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from eeg. IEEE Trans Affect Comput 5(3):327–339

    Article  Google Scholar 

  7. Li M, Lu B-L (2009) Emotion classification based on gamma-band eeg. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual international conference of the IEEE, 2009, pp 1223–1226

  8. Lin Y-P, Wang C-H, Jung T-P, Wu T-L, Jeng S-K, Duann J-R, Chen J-H (2010) Eeg-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806

    Article  Google Scholar 

  9. Zheng W (2017) Multichannel eeg-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans Cogn Dev Syst 9(3):281–290

    Article  Google Scholar 

  10. Zhang Y, Ji X, Zhang S (2016) An approach to eeg-based emotion recognition using combined feature extraction method. Neurosci Lett 633:152–157

    Article  Google Scholar 

  11. Zheng W-L, Lu B-L (2015) Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 7(3):162–175

    Article  Google Scholar 

  12. Zheng W (2014) Multi-view facial expression recognition based on group sparse reduced-rank regression. IEEE Trans Affect Comput 5(1):71–85

    Article  Google Scholar 

  13. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, vol 14, pp 585–591

  14. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint arXiv:1009.5055,

  15. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin T, Yu Z, Li L, Li C (2015) Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation. Neurocomputing 154:245–256

    Article  Google Scholar 

  17. De la Torre F (2012) A least-squares framework for component analysis. IEEE Trans Pattern Anal Mach Intell 34(6):1041–1055

    Article  Google Scholar 

  18. Gross JJ, Levenson RW (1995) Emotion elicitation using films. Cogn Emot 9(1):87–108

    Article  Google Scholar 

  19. Schaefer A, Nils F, Sanchez X, Philippot P (2010) Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers. Cogn Emot 24(7):1153–1172

    Article  Google Scholar 

  20. Xu P, Huang Y, Luo Y (2010) Establishment and assessment of native Chinese affective video system. Chin Mental Health J 24(7):551–554

    Google Scholar 

  21. Petrantonakis PC, Hadjileontiadis LJ (2010) Emotion recognition from eeg using higher order crossings. IEEE Trans Inf Technol Biomed 14(2):186–197

    Article  Google Scholar 

  22. Sourina O, Liu Y (2011) A fractal-based algorithm of emotion recognition from eeg using arousal-valence model. In: BIOSIGNALS, pp 209–214

  23. Hjorth B (1970) Eeg analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310

    Article  Google Scholar 

  24. Ansari-Asl K, Chanel G, Pun T (2007) A channel selection method for eeg classification in emotion assessment based on synchronization likelihood In: Signal processing conference, 15th European, IEEE, 2007, pp 1241–1245

  25. Horlings R, Datcu D, Rothkrantz LJ (2008) Emotion recognition using brain activity. In: Proceedings of the 9th international conference on computer systems and technologies and workshop for PhD students in computing, ACM, 2008, p. 6

  26. Liu Y, Sourina O (2013) Real-time fractal-based valence level recognition from eeg. In: Transactions on computational science XVIII, Springer, pp 101–120

  27. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of eeg irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79(3):204–210

    Article  Google Scholar 

  28. Lin D, Zhang J, Li J, Calhoun VD, Deng H-W, Wang Y-P (2013) Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics 14(1):245

    Article  Google Scholar 

  29. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  30. Thompson B (2005) Canonical correlation analysis. Encyclopedia of statistics in behavioral science

  31. Parkhomenko E, Tritchler D, Beyene J et al (2009) Sparse canonical correlation analysis with application to genomic data integration. Stat Appl Genet Mol Biol 8(1):1–34

    Article  MathSciNet  MATH  Google Scholar 

  32. Mauss IB, Robinson MD (2009) Measures of emotion: a review. Cogn Emot 23(2):209–237

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China under Grant 2015CB351704, the National Natural Science Foundation of China under Grant 61572009, Grant 61772276, and Grant 61602244, and the Jiangsu Provincial Key Research and Development Program under Grant BE2016616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zheng, W., Cui, Z. et al. EEG Emotion Recognition Based on Graph Regularized Sparse Linear Regression. Neural Process Lett 49, 555–571 (2019). https://doi.org/10.1007/s11063-018-9829-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9829-1

Keywords

Navigation