Skip to main content
Log in

Delayed Feedback Controller based Finite Time Synchronization of Discontinuous Neural Networks with Mixed Time-Varying Delays

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper addresses finite-time synchronization of artificial neural networks with discrete and distributed time-varying delays as well as discontinuous neuron activation functions which may be unbounded or non-monotonic. Under the framework of Filippov solution, delay feedback controller is studied by constructing nonsmooth Lyapunov function and differential inclusions theory based on finite time convergence theorem. Several effective new criteria are derived. Moreover, the estimation of settling time is established. The obtained results ensure that the synchronization in finite time is achieved. Finally, simulation results are presented to demonstrate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hu C, Yu J, Jiang H (2014) Finite-time synchronization of delayed neural networks with Cohen–Grossberg type based on delayed feedback control. Neurocomputing 143:90–96

    Article  Google Scholar 

  2. Huang J, Li C, Huang T, He X (2014) Finite-time lag synchronization of delayed neural networks. Neurocomputing 139:145–149

    Article  Google Scholar 

  3. Yu J, Hu C, Jiang H, Teng Z (2012) Synchronization of nonlinear systems with delays via intermittent control. Commun Nonlinear Sci Numer Simul 17:2978–89

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan L, Huang L, Fang X (2017) Finite-time synchronization for recurrent neural networks with discontinuous activations and time-varying delays. Chaos 27:013101

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang H, Han ZZ, Xie QY, Zhang W (2009) Finite-time chaos synchronization of unified chaos system with uncertain parameters. Commun Nonlinear Sci Numer Simulat 14:2239–2247

    Article  Google Scholar 

  6. Li S, Tian TP (2003) Finite-time synchronization of chaotic systems. Chaos Solitons Fractals 15:303–310

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang X, Lin W, Yang B (2005) Global Finite-time synchronization of a class of uncertain nonlinear systems. Automatica 41:881–8

    Article  MATH  Google Scholar 

  8. Yang X, Cao J (2010) Finite-time stochastic synchronization of complex networks. Appl Math Model 34:3631–41

    Article  MathSciNet  MATH  Google Scholar 

  9. Kundu A, Das P, Roy AB (2016) Stability, bifurcations and synchronization in a delayed neural network model of n-identical neurons. Math Comput Simul 121:12–33

    Article  MathSciNet  Google Scholar 

  10. Colet P, Roy P (1994) Digital communication with synchronised chaotic lasers. Opt Lett 19:2056–8

    Article  Google Scholar 

  11. Munuzuri VP, Villar VP, Chua LO (1993) Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):174–181

    Article  MATH  Google Scholar 

  12. Lim SF, Khambadkone AM (2011) A simple digital DCM control scheme for boost PFC operating in both CCM and DCM. IEEE Trans Ind Appl 47(4):1802–1812

    Article  Google Scholar 

  13. Balasubramaniam P, Muthukumar P (2014) Synchronization of chaotic systems using feedback controller: an application to Diffie–Hellman key exchange protocol and EIGamal public key cryptosystem. J Egypt Math Soc 22:365–372

    Article  MATH  Google Scholar 

  14. Pisarchik AN, Arecchi FT, Meucci R, Garbo AD (2001) Synchronization of Shilnikov Chaos in CO\(_{2}\) laser with feedback. Laser Phys 11(11):1235–1239

    Google Scholar 

  15. Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399:354–359

    Article  Google Scholar 

  16. Li YN, Chen L, Cai ZS, Zhao XZ (2003) Study on chaos synchronization in the Belousov Zhabotinsky chemical system. Chaos Solitons Fractals 17:699–707

    Article  MATH  Google Scholar 

  17. King SY, Hwang JN (1989) Neural architectures for robotic applications. IEEE Trans Robot Autom 5:641–657

    Article  Google Scholar 

  18. Jin L, Li S, Hu B (2018) RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Trans Ind Inform 14:189–199

    Article  Google Scholar 

  19. Jin L, Li S, Hu B, Liu M, Yu J (2018) Noise-suppressing neural algorithm for solving time-varying system of linear equations: a control-based approach. IEEE Trans Ind Inform 99:1–1

    Google Scholar 

  20. Li S, Zhou M, Luo X (2017) Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trnas Neural Netw Learn Syst 99:1–11

    Google Scholar 

  21. Singer W (1993) Synchronization of cortical activity an its putative role in information processing and learning. Annu Rev Physiol 55:349–74

    Article  Google Scholar 

  22. Uhlhaas PJ, Singer W (2006) Neural synchrony in brainDisorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    Article  Google Scholar 

  23. Jiruska P, Curtis M, Jefferys J, Schevon C, Schiff S, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797

    Article  Google Scholar 

  24. Majumdar K, Prasad P, Verma S (2014) Synchronization implies seizure or seizure implies synchronization? Brain Topogr 27:112–122

    Article  Google Scholar 

  25. Lu W, Chen T (2006) Dynamical behaviors of delayed neural network systems with discontinuous activation functions. Neural Comput 18:683–708

    Article  MathSciNet  MATH  Google Scholar 

  26. Schiepek G, Tominschek I, Heinzel S, Aigner M, Dold M, Unger A, Lenz G, Windischberger C, Moser E, Ploderl M, Lutz J, Meindl T, Zaudig M, Pogarell O, Karch S (2013) Discontinuous patterns of brain activation in the psychotherapy process of obsessive-compulsive disorder: converging results from repeated fMRI and daily delf-reports. PloS one 8:e71863

    Article  Google Scholar 

  27. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  28. Forti M, Nistri P (2003) Global convergence of neural networks with discontinuous neuron activations. IEEE Trans Circuits Syst I Fundam Theory Appl 50:1421–1735

    Article  MathSciNet  MATH  Google Scholar 

  29. Forti M, Nistri P, Papini D (2005) Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw Learn Syst 16:1449–1463

    Article  Google Scholar 

  30. Wng H, Han Z, Xie QY, Zhang W (2009) Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal Real World Appl 10:2842–2849

    Article  MathSciNet  MATH  Google Scholar 

  31. Kundu A, Das P, Roy AB (2013) Complex dynamics of a four neuron network model having a pair of short-cut connections with multiple delays. Nonlinear Dyn 72:643–662

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang X, Feng Z, Feng J, Cao J (2017) Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw 85:157–164

    Article  Google Scholar 

  33. He W, Qian F, Cao J (2017) Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Netw 85:1–9

    Article  Google Scholar 

  34. Forti M, Grazzini M, Nistri P, Pancioni L (2006) Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys D Nonlinear Phenom 214:88–99

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang C, Deng F, Peng Y, Zhang B (2015) Adaptive synchronization of Cohen–Grossberg neural network with mixed time-varying delays and stochastic perturbation. Appl Math Comput 269:792–801

    MathSciNet  MATH  Google Scholar 

  36. Yang X, Huang C, Zhu Q (2011) Synchronization of switched neural networks with mixed delays via impulsive control. Chaos Solitons Fractals 44:817–826

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang CH, Wu CL (2014) Generalized synchronization with uncertain parameters of nonlinear dynamic system via adaptive control. Sci World J 2014:9

    Google Scholar 

  38. Zhu H, Cui B (2010) Stabilization and synchronization of chaotic systems via intermittent control. Commun Nonlinear Sci Numer Simul 15:3577–86

    Article  MathSciNet  MATH  Google Scholar 

  39. Vincent U, Guo R (2011) Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys Lett A 375:2322–6

    Article  MATH  Google Scholar 

  40. Aghababa MP, Khanmohammadiv S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Model 35(6):3080–3091

    Article  MathSciNet  MATH  Google Scholar 

  41. Ahmad I, Saaban A, Ibrahim A, Shahzad M (2015) A research on the synchronization of two novel chaotic systems based on a nonlinear active control algorithm. Eng Technol Appl Sci Res 5(1):739–747

    Google Scholar 

  42. Zhang Y, Li S, Jiang X (2018) Near-optimal control without solving HJB equations and its applications. IEEE Trans Ind Electron 99:1-1

    Google Scholar 

  43. Yang X, Cao J, Ho DW (2015) Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control. Cognitive Neurodyn 9:113–128

    Article  Google Scholar 

  44. Liu J, Liu X, Xie WC (2012) Global convergence of neural networks with mixed time varying delays and discontinuous neuron activations. Inf Sci 183:92–105

    Article  MathSciNet  MATH  Google Scholar 

  45. Filippov A (1960) Differential equations with discontinuous right-hand side. Mathematicheskii 93(1):99–128

    MathSciNet  MATH  Google Scholar 

  46. Aubin J, Cellina A (1984) Differential inclusions. Springer, Berlin

    Book  MATH  Google Scholar 

  47. Cai Z, Huang L (2011) Existance and global asymptotic stability of periodic solution for discrete and distributed time-varying delayed neural networks with discontinuous activations. Neuro-computing 74:3170–3179

    Google Scholar 

  48. Pecora LM, Carroll TL (1990) Synchronization in chaotic syatems. Phys Rev Lett 64(8):821–824

    Article  MathSciNet  MATH  Google Scholar 

  49. Hardy G, Littlewood J, Polya G (1988) Inequality. Cambridge University Press, Cambridge

    Google Scholar 

  50. Tang Y (1998) Terminal sliding mode control for rigid robots. Autometica 34(1):51–56

    Article  MathSciNet  MATH  Google Scholar 

  51. Cao J, Liu X (2010) Complete periodic synchronization of delayed neural networks with discontinuous activations. Int J Bifurc Chaos 20(7):2151–2164

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu X, Chen T, Cao J, Lu W (2011) Dissipativity and quasisynchronization for neural networks with discontinuous activations and parameter mismatches. Neural Netw 24:1013–1021

    Article  MATH  Google Scholar 

  53. Wu E, Yang X (2015) Generalized lag synchronization of neural networks with discontinuous activations and bounded perturbations. Circuits Syst Signal Process 7:2381–94

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and learned reviewers for their valuable comments and suggestions to improve the standard of the paper. This work is supported by Indian Institute of Engineering Science and Technology under institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasakha Das.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Das, P. & Kundu, A. Delayed Feedback Controller based Finite Time Synchronization of Discontinuous Neural Networks with Mixed Time-Varying Delays. Neural Process Lett 49, 693–709 (2019). https://doi.org/10.1007/s11063-018-9850-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9850-4

Keywords