Skip to main content
Log in

Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Face recognition is still a challenging issue due to the presence of intrinsic complexity, external variations and number limitation of training samples. In this paper, a novel face recognition method based on probabilistic latent semantic analysis (pLSA) model is developed, which mainly contains two stages: bag-of-words features extraction and semantic representation learning. In the first stage, to extract more structure information, the region-specific dictionary strategy is employed, i.e., generating a dictionary for each region. The encoded and sum-pooled features of all regions are concatenated together. In the second stage, a discriminative pLSA (DpLSA) model is presented, which initializes the word-topic distribution \(P(w|z_k)\) by the center point of the training data from category k. As a result, the problem of how to choose appropriate number of topics in classical topic model is alleviated, and the training process of DpLSA is very fast only requiring few iterations. Moreover, the discovered topic-document distribution \(P\left( z|d\right) \) is discriminative and semantic with the dominant topic entry corresponds to the category label of image d, which enables performing classification by \(P\left( z|d\right) \) directly. Extensive experiments on four representative databases demonstrate that the proposed DpLSA is effective for face recognition under single training sample and possesses a certain degree of robustness to illumination, pose, as well as occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. \({\mathcal {R}}\equiv conv(P(\cdot |z_1)\),\(P(\cdot |z_2)\),\(P(\cdot |z_3))\).

  2. Code kindly provided at: http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm.

  3. Code kindly provided at: http://www.cad.zju.edu.cn/home/dengcai/Data/Metric.html.

  4. Code kindly provided at: http://bmc.uestc.edu.cn/~fshen/.

  5. Code kindly provided at: http://mx.nthu.edu.tw/~tsunghan/Source%20codes.html.

  6. Following the original setting, whitening PCA (WPCA) is applied to reduce the dimension of PCANet features on FERET and LFW databases.

  7. Since the image size of FERET used in this paper is \(80 \times 80\) (not \(150 \times 90\)), so we fine-tune the model parameters of PCANet by varying \(k_1\) and \(k_2\) from 3 to 13 with step 2, hist block size from 6 to 20 with step 2, keeping \(L_1=L_2=8\). Then the optimal parameters are selected.

  8. Code kindly provided at: http://www.ifp.illinois.edu/~jyang29/ScSPM.htm.

References

  1. Zhao W, Chellappa R, Phillips P, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

  2. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  3. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(1):711–720

    Article  Google Scholar 

  4. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  5. Ahonen T, Hadid A, Pietikäinen M (2006) Face decription with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  6. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  7. Li L, Ge H, Tong Y, Zhang Y (2017) Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem. Neural Process Lett. https://doi.org/10.1007/s11063-017-9693-4

    Google Scholar 

  8. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  9. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 20–25

  10. Wang S, Chen H, Yan W, Chen Y, Fu X (2014) Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Process Lett 39:25–43

    Article  Google Scholar 

  11. Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process 24(3):980–993

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding C, Tao D (2016) A comprehensive survey on pose-invariant face recognition. ACM Trans Intell Syst Technol 7(3):37

    Article  Google Scholar 

  13. Ding C, Tao D (2017) Pose-invariant face recognition with homography-based normalization. Pattern Recogn 66:144–152

    Article  Google Scholar 

  14. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  15. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE international conference on computer vision, pp 471–478

  16. Jin T, Liu Z, Yu Z, Min X, Li L (2017) Locality preserving collaborative representation for face recognition. Neural Process Lett 45:967–979

    Article  Google Scholar 

  17. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 625–632

  18. Yang M, Van Gool L, Zhang L (2013) Sparse variation dictionary learning for face recognition with a single training sample per person. In: Proceedings of IEEE international conference on computer vision, pp 689–696

  19. Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42:177–196

    Article  MATH  Google Scholar 

  20. Li F, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 524–531

  21. Bosch A, Zisserman A, Munoz X (2006) Scene classification via pLSA. In: Proceedings of European conference on computer vision, pp 517–530

  22. Cao L, Li F (2007) Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: Proceedings of IEEE international conference on computer vision, pp 1–8

  23. Sivic J, Russell B, Efros A, Zisserman A, Freeman W (2005) Discovering objects and their location in images. In: Proceedings of IEEE international conference on computer vision, pp 370–377

  24. Dempster A, Laird N, Rubin D (1997) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  25. Lovato P, Bicego M, MurinoV, Perina A (2015) Robust initialization for learning latent dirichlet allocation. In: International workshop on similarity-based pattern recognition, pp 117–132

  26. Wang Y, Mori G (2009) Human action recognition by semilatent topic models. IEEE Trans Pattern Anal Mach Intell 31(10):1762–1774

    Article  Google Scholar 

  27. Lu Z, Peng Y, Ip H (2010) Image categorization via robust pLSA. Pattern Recogn Lett 31:36–43

    Article  Google Scholar 

  28. Cui Z, Li W, Xu D, Shan S, Chen X (2013) Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3554–3561

  29. Cui Z, Shan S, Wang R, Zhang L, Chen X (2015) Sparsely encoded local descriptor for face verification. Neurocomputing 147:403–411

    Article  Google Scholar 

  30. Lu J, Liong V, Wang G, Moulin P (2015) Joint feature learning for face recognition. IEEE Trans Inf Forensics Secur 10:1371–1383

    Article  Google Scholar 

  31. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2169–2178

  32. Li Z, Imai J, Kaneko M (2010) Robust face recognition using block-based bag of words. In: Proceedings of IEEE international conference on pattern recognition, pp 1285–1288

  33. Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: A simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang Y, Xu C, You S, Xu C, Tao D (2017) DCT regularized extreme visual recovery. IEEE Trans Image Process 26(7):3360–3371

    Article  MathSciNet  MATH  Google Scholar 

  35. Li J, Xu C, Yang W, Sun C (2017) SPA: spatially pooled attributes for image retrieval. Neurocomputing 257:47–58

    Article  Google Scholar 

  36. Sydorov V, Sakurada M, Lampert C (2014) Deep fisher kernels-end to end learning of the fisher kernel gmm parameters. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1402–1409

  37. Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2707–2714

  38. Shen F, Yang Y, Zhou X, Liu X, Shao J (2016) Face identification with second-order pooling in single-layer networks. Neurocomputing 187:11–18

    Article  Google Scholar 

  39. Shen F, Shen C, Zhou X, Yang Y, Shen H (2016) Face image classification by pooling raw features. Pattern Recogn 54:94–103

    Article  Google Scholar 

  40. Zhu P, Zhang L, Hu Q, Shiu S (2012) Multi-scale patch based collaborative representation for face recognition with margin distribution optimization. In: Proceedings of European conference on computer vision, pp 822–835

  41. Zhang Y, Tan X (2009) Face recognition via spatial-pLSA. In: Proceedings of Chinese conference on pattern recognition, pp 518–522

  42. Jurie J, Triggs B (2005) Creating efficient codebooks for visual recognition. In: Proceedings of IEEE international conference on computer vision, pp 604–610

  43. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1794–1801

  44. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3360–3367

  45. Vedaldi A, Fulkerson B (2010) VLFeat: an open and portable library of computer vision algorithms. In: International conference on multimedia. ACM, pp 1469–1472

  46. Ding C, Choi J, Tao D, Davis L (2016) Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans Pattern Anal Mach Intell 38(3):518–531

    Article  Google Scholar 

  47. Vu N, Caplier A (2011) Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE Trans Image Process 21(3):1352–1365

    MathSciNet  MATH  Google Scholar 

  48. Kannala J, Rahtu E (2012) BSIF: binarized statistical image features. In: Proceedings of international conference on pattern recognition, pp 1363–1366

  49. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(1):4311–4322

    Article  MATH  Google Scholar 

  50. Huang Y, Wu Z, Wang L, Tan T (2014) Feature coding in image classification: a comprehensive study. IEEE Trans Pattern Anal Mach Intell 36(3):493–506

    Article  Google Scholar 

  51. Yu K, Zhang T, Gong Y (2009) Nonlinear learning using local coordinate coding. In: Proceedings of the advances in neural information processing systems, pp 2223–2231

  52. Martínez A, Benavente R (1998) The AR face database. Technical report

  53. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  54. Phillips P, Wechsler H, Huang J, Rauss P (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  55. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts, Amherst

  56. Wolf L, Hassner T, Taigman Y(2009) Similarity scores based on background samples. In: Proceedings of Asian conference on computer vision, pp 88–97

  57. Xu B, Bu J, Chen C, Wang C, Cai D, He X (2015) EMR: a scalable graph-based ranking model for content-based image retrieval. IEEE Trans Knowl Data Eng 27(1):102–114

    Article  Google Scholar 

  58. Zhu P, Yang M, Zhang L, Lee IY (2014) Local generic representation for face recognition with single sample per person. In: Proceedings of Asian conference on computer vision, pp 34–50

  59. Chen S, Liu J, Zhou Z (2004) Making flda applicable to face recognition with one sample per person. Pattern Recognit 37(7):1553–1555

    Article  Google Scholar 

  60. Lu J, Tan Y, Wang G (2013) Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans Pattern Anal Mach Intell 35(1):39–51

    Article  Google Scholar 

  61. Yang L (2007) The connection between manifold learning and distance metric learning. Technical report

  62. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1891–1898

  63. Taigman Y, Yang M, Ranzato M, Wolf L (2014) DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1701–1708

  64. Ding C, Tao D (2015) Robust face recognition via multimodal deep face representation. IEEE Trans Multimed 17(11):2049–2058

    Article  Google Scholar 

  65. Ding C, Tao D (2017) Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2700390

    Google Scholar 

  66. Zhang P, You X, Ou W, Chen C, Cheung Y (2016) Sparse discriminative multimanifold embedding for one-sample face identification. Pattern Recognit 52:249–259

    Article  Google Scholar 

  67. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers whose valuable comments and suggestions greatly improve this paper. The work described in this paper was partially supported by the National Natural Science Foundation of China (Grant Nos. 61772093, 61402062, 61602068), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1196), Chongqing Research Program of Basic Science & Frontier Technology (Grant No. cstc2015jcyjA40037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoxiang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Yang, D., Zhang, X. et al. Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition. Neural Process Lett 49, 1273–1298 (2019). https://doi.org/10.1007/s11063-018-9852-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9852-2

Keywords

Navigation