Abstract
Recent development of technologies has made it easy to obtain a large amount of multi-view biomedical data from different sources or different preprocessing methods, such as the genome-wide data or electroencephalography (EEG) data. Multi-view intact space learning (MISL), which integrates the complementary information from multiple views to discover a latent intact representation of the data, has shown to be effective in computer vision and data mining tasks. However, it fails in biomedical data analysis since it loses geometric information when projecting data from the original space to the intact space. To overcome this problem, we propose a multi-view intact space learning with geodesic similarity preserving (MISL-GSP). The method first builds one KNN graph for each view and then constructs a geodesic distance matrix that provides a suitable and noise-free similarity for characterizing the intra-view proximity. Based on the geodesic distance matrix, the average similarity among all the views can be obtained, which is used in the manifold regularization term of the multi-view intact space learning for preserving the geodesic similarity. Extensive experiments have been conducted to evaluate the effectiveness of the proposed method, including the clustering experiments on 5 cancer datasets from the cancer genome atlas and the classification experiments on 1 EEG dataset.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11063-018-9874-9/MediaObjects/11063_2018_9874_Fig7_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahonen T et al (2016) Cover song identification using compression-based distance measures, Series of publications A/Department of Computer Science. University of Helsinki, Helsinki
Bach FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st international conference on machine learning. ACM, p 6
Belkin M (2003) Problems of learning on manifolds. PhD thesis, The University of Chicago, AAI3097083
Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS 14:585–591
Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(November):2399–2434
Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434. http://dl.acm.org/citation.cfm?id=1248547.1248632
Bermingham M, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell HF, Wright AF, Wilson J, Agakov F, Navarro P, Haley C (2015) Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep 5:10312
Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, Providence
Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271. https://doi.org/10.1007/BF01386390
Faria FA, Dos Santos JA, Rocha A, Torres RdS (2014) A framework for selection and fusion of pattern classifiers in multimedia recognition. Pattern Recogn Lett 39:52–64
Ghayab HRA, Li Y, Abdulla S, Diykh M, Wan X (2016) Classification of epileptic EEG signals based on simple random sampling and sequential feature selection. Brain Inform 3(2):85–91. https://doi.org/10.1007/s40708-016-0039-1
Henriques R, Antunes C, Madeira SC (2015) A structured view on pattern mining-based biclustering. Pattern Recogn 48(12):3941–3958. https://doi.org/10.1016/j.patcog.2015.06.018
Henriques R, Ferreira F, Madeira CS (2017) BicPAMS: software for biological data analysis with pattern-based biclustering. BMC Bioinform. https://doi.org/10.1186/s12859-017-1493-3
Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751. https://doi.org/10.1109/TIE.2014.2378735
Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670. https://doi.org/10.1109/TIP.2015.2487860
Hu B, Dai Y, Su Y, Moore P, Zhang X, Mao C, Chen J, Xu L (2017) Feature selection for optimized high-dimensional biomedical data using the improved shuffled frog leaping algorithm. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2016.2602263
Huang L, Chao HY, Wang CD (2017) Multi-view intact space clustering. In: ACPR, pp 500–505
Kumar C, Mann M (2009) Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett 583(11):1703–1712. https://doi.org/10.1016/j.febslet.2009.03.035. http://www.sciencedirect.com/science/article/pii/S0014579309002208. Prague Special Issue: Functional Genomics and Proteomics
Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5(January):27–72
Lee K, Man Z, Wang D, Cao Z (2013) Classification of bioinformatics dataset using finite impulse response extreme learning machine for cancer diagnosis. Neural Comput Appl 22(3):457–468. https://doi.org/10.1007/s00521-012-0847-z
Li JH, Wang CD, Li PZ, Lai JH (2018) Discriminative metric learning for multi-view graph partitioning. Pattern Recogn 75:199–213
Lin KY, Huang L, Wang CD, Chao HY (2018) Multi-view proximity learning for clustering. In: Proceedings of the 23rd international conference on database systems for advanced applications (DASFAA)
Lin KY, Wang CD, Meng YQ, Zhao ZL (2017) Multi-view unit intact space learning. In: International conference on knowledge science, engineering and management. Springer, pp 211–223
Lu Y, Han J (2003) Cancer classification using gene expression data. Inf Syst 28(4):243–268. https://doi.org/10.1016/S0306-4379(02)00072-8. http://www.sciencedirect.com/science/article/pii/S0306437902000728. Data Management in Bioinformatics
Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45. https://doi.org/10.1109/TCBB.2004.2
Muslea I, Minton S, Knoblock CA (2006) Active learning with multiple views. J Artif Intell Res 27:203–233
Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: Proceedings of the 9th international conference on information and knowledge management. ACM, pp 86–93
Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) SimpleMKL. J Mach Learn Res 9(November):2491–2521
Schaefer G, Nakashima T, Yokota Y (2008) Fuzzy classification for gene expression data analysis. Springer, Berlin, pp 209–218. https://doi.org/10.1007/978-3-540-76803-6_8
Semmlow J, Griffel B (2014) Biosignal and medical image processing, 3rd edn. CRC Press, Boca Raton. https://books.google.com/books?id=kFrSBQAAQBAJ
Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7(July):1531–1565
Sun S (2011) Multi-view Laplacian support vector machines. In: International conference on advanced data mining and applications. Springer, pp 209–222
Sun S, Jin F (2011) Robust co-training. Int J Pattern Recognit Artif Intell 25(07):1113–1126
Sun S, Shawe-Taylor J (2010) Sparse semi-supervised learning using conjugate functions. J Mach Learn Res 11(September):2423–2455
Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323
The Cancer Genome Atlas (TCGA). Website (2017). https://cancergenome.nih.gov/abouttcga
ul Amir Afsar Minhas F, Asif A, Arif M (2016) CAFÉ-map: context aware feature mapping for mining high dimensional biomedical data. Comput Biol Med 79:68–79. https://doi.org/10.1016/j.compbiomed.2016.10.006
Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11(3):333–337
Wang CD, Lai JH, Yu PS (2016) Multi-view clustering based on belief propagation. IEEE Trans Knowl Data Eng 28(4):1007–1021
Wang Q, Lv H, Yue J, Mitchell E (2017) Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier. Neural Comput Appl 28(8):2293–2301
Xie X, Sun S (2014) Multi-view Laplacian twin support vector machines. Appl Intell 41(4):1059–1068
Xie X, Sun S (2015) Multi-view twin support vector machines. Intell Data Anal 19(4):701–712
Xu C, Tao D, Xu C (2015) Multi-view intact space learning. IEEE Trans Pattern Anal Mach Intell 37(12):2531–2544. https://doi.org/10.1109/TPAMI.2015.2417578
Xu YM, Wang CD, Lai JH (2016) Weighted multi-view clustering with feature selection. Pattern Recogn 53:25–35
Yu J, Hong C, Rui Y, Tao D (2017) Multi-task autoencoder model for recovering human poses. IEEE Trans Ind Electron 65(6):5060–5068
Yu J, Yang X, Gao F, Tao D (2017) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024. https://doi.org/10.1109/TCYB.2016.2591583
Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016. https://doi.org/10.1109/TIFS.2016.2636090
Zhang GY, Wang CD, Huang D, Zheng WS (2017) Multi-view collaborative locally adaptive clustering with Minkowski metric. Expert Syst Appl 86:307–320
Zhang GY, Wang CD, Huang D, Zheng WS, Zhou YR (2018) TW-co-k-means: two-level weighted collaborative \(k\)-means for multi-view clustering. Knowl Based Syst 150:127–138
Zhao J, Xie X, Xu X, Sun S (2017) Multi-view learning overview: recent progress and new challenges. Inf Fusion 38:43–54. https://doi.org/10.1016/j.inffus.2017.02.007. http://www.sciencedirect.com/science/article/pii/S1566253516302032
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhan, Z., Ma, Z. & Peng, W. Biomedical Data Analysis Based on Multi-view Intact Space Learning with Geodesic Similarity Preserving. Neural Process Lett 49, 1381–1398 (2019). https://doi.org/10.1007/s11063-018-9874-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-018-9874-9