Skip to main content

Advertisement

Log in

Biomedical Data Analysis Based on Multi-view Intact Space Learning with Geodesic Similarity Preserving

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Recent development of technologies has made it easy to obtain a large amount of multi-view biomedical data from different sources or different preprocessing methods, such as the genome-wide data or electroencephalography (EEG) data. Multi-view intact space learning (MISL), which integrates the complementary information from multiple views to discover a latent intact representation of the data, has shown to be effective in computer vision and data mining tasks. However, it fails in biomedical data analysis since it loses geometric information when projecting data from the original space to the intact space. To overcome this problem, we propose a multi-view intact space learning with geodesic similarity preserving (MISL-GSP). The method first builds one KNN graph for each view and then constructs a geodesic distance matrix that provides a suitable and noise-free similarity for characterizing the intra-view proximity. Based on the geodesic distance matrix, the average similarity among all the views can be obtained, which is used in the manifold regularization term of the multi-view intact space learning for preserving the geodesic similarity. Extensive experiments have been conducted to evaluate the effectiveness of the proposed method, including the clustering experiments on 5 cancer datasets from the cancer genome atlas and the classification experiments on 1 EEG dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahonen T et al (2016) Cover song identification using compression-based distance measures, Series of publications A/Department of Computer Science. University of Helsinki, Helsinki

    Google Scholar 

  2. Bach FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st international conference on machine learning. ACM, p 6

  3. Belkin M (2003) Problems of learning on manifolds. PhD thesis, The University of Chicago, AAI3097083

  4. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS 14:585–591

    Google Scholar 

  5. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(November):2399–2434

    MathSciNet  MATH  Google Scholar 

  6. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434. http://dl.acm.org/citation.cfm?id=1248547.1248632

  7. Bermingham M, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell HF, Wright AF, Wilson J, Agakov F, Navarro P, Haley C (2015) Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep 5:10312

    Article  Google Scholar 

  8. Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, Providence

    MATH  Google Scholar 

  9. Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  10. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271. https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  11. Faria FA, Dos Santos JA, Rocha A, Torres RdS (2014) A framework for selection and fusion of pattern classifiers in multimedia recognition. Pattern Recogn Lett 39:52–64

    Article  Google Scholar 

  12. Ghayab HRA, Li Y, Abdulla S, Diykh M, Wan X (2016) Classification of epileptic EEG signals based on simple random sampling and sequential feature selection. Brain Inform 3(2):85–91. https://doi.org/10.1007/s40708-016-0039-1

    Article  Google Scholar 

  13. Henriques R, Antunes C, Madeira SC (2015) A structured view on pattern mining-based biclustering. Pattern Recogn 48(12):3941–3958. https://doi.org/10.1016/j.patcog.2015.06.018

    Article  Google Scholar 

  14. Henriques R, Ferreira F, Madeira CS (2017) BicPAMS: software for biological data analysis with pattern-based biclustering. BMC Bioinform. https://doi.org/10.1186/s12859-017-1493-3

  15. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751. https://doi.org/10.1109/TIE.2014.2378735

    Google Scholar 

  16. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670. https://doi.org/10.1109/TIP.2015.2487860

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu B, Dai Y, Su Y, Moore P, Zhang X, Mao C, Chen J, Xu L (2017) Feature selection for optimized high-dimensional biomedical data using the improved shuffled frog leaping algorithm. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2016.2602263

  18. Huang L, Chao HY, Wang CD (2017) Multi-view intact space clustering. In: ACPR, pp 500–505

  19. Kumar C, Mann M (2009) Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett 583(11):1703–1712. https://doi.org/10.1016/j.febslet.2009.03.035. http://www.sciencedirect.com/science/article/pii/S0014579309002208. Prague Special Issue: Functional Genomics and Proteomics

  20. Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5(January):27–72

    MathSciNet  MATH  Google Scholar 

  21. Lee K, Man Z, Wang D, Cao Z (2013) Classification of bioinformatics dataset using finite impulse response extreme learning machine for cancer diagnosis. Neural Comput Appl 22(3):457–468. https://doi.org/10.1007/s00521-012-0847-z

    Article  Google Scholar 

  22. Li JH, Wang CD, Li PZ, Lai JH (2018) Discriminative metric learning for multi-view graph partitioning. Pattern Recogn 75:199–213

    Article  Google Scholar 

  23. Lin KY, Huang L, Wang CD, Chao HY (2018) Multi-view proximity learning for clustering. In: Proceedings of the 23rd international conference on database systems for advanced applications (DASFAA)

  24. Lin KY, Wang CD, Meng YQ, Zhao ZL (2017) Multi-view unit intact space learning. In: International conference on knowledge science, engineering and management. Springer, pp 211–223

  25. Lu Y, Han J (2003) Cancer classification using gene expression data. Inf Syst 28(4):243–268. https://doi.org/10.1016/S0306-4379(02)00072-8. http://www.sciencedirect.com/science/article/pii/S0306437902000728. Data Management in Bioinformatics

  26. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45. https://doi.org/10.1109/TCBB.2004.2

    Article  Google Scholar 

  27. Muslea I, Minton S, Knoblock CA (2006) Active learning with multiple views. J Artif Intell Res 27:203–233

    Article  MathSciNet  MATH  Google Scholar 

  28. Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: Proceedings of the 9th international conference on information and knowledge management. ACM, pp 86–93

  29. Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) SimpleMKL. J Mach Learn Res 9(November):2491–2521

    MathSciNet  MATH  Google Scholar 

  30. Schaefer G, Nakashima T, Yokota Y (2008) Fuzzy classification for gene expression data analysis. Springer, Berlin, pp 209–218. https://doi.org/10.1007/978-3-540-76803-6_8

    Google Scholar 

  31. Semmlow J, Griffel B (2014) Biosignal and medical image processing, 3rd edn. CRC Press, Boca Raton. https://books.google.com/books?id=kFrSBQAAQBAJ

  32. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7(July):1531–1565

    MathSciNet  MATH  Google Scholar 

  33. Sun S (2011) Multi-view Laplacian support vector machines. In: International conference on advanced data mining and applications. Springer, pp 209–222

  34. Sun S, Jin F (2011) Robust co-training. Int J Pattern Recognit Artif Intell 25(07):1113–1126

    Article  MathSciNet  Google Scholar 

  35. Sun S, Shawe-Taylor J (2010) Sparse semi-supervised learning using conjugate functions. J Mach Learn Res 11(September):2423–2455

    MathSciNet  MATH  Google Scholar 

  36. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  37. The Cancer Genome Atlas (TCGA). Website (2017). https://cancergenome.nih.gov/abouttcga

  38. ul Amir Afsar Minhas F, Asif A, Arif M (2016) CAFÉ-map: context aware feature mapping for mining high dimensional biomedical data. Comput Biol Med 79:68–79. https://doi.org/10.1016/j.compbiomed.2016.10.006

    Article  Google Scholar 

  39. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11(3):333–337

    Article  Google Scholar 

  40. Wang CD, Lai JH, Yu PS (2016) Multi-view clustering based on belief propagation. IEEE Trans Knowl Data Eng 28(4):1007–1021

    Article  Google Scholar 

  41. Wang Q, Lv H, Yue J, Mitchell E (2017) Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier. Neural Comput Appl 28(8):2293–2301

    Article  Google Scholar 

  42. Xie X, Sun S (2014) Multi-view Laplacian twin support vector machines. Appl Intell 41(4):1059–1068

    Article  Google Scholar 

  43. Xie X, Sun S (2015) Multi-view twin support vector machines. Intell Data Anal 19(4):701–712

    Article  Google Scholar 

  44. Xu C, Tao D, Xu C (2015) Multi-view intact space learning. IEEE Trans Pattern Anal Mach Intell 37(12):2531–2544. https://doi.org/10.1109/TPAMI.2015.2417578

    Article  Google Scholar 

  45. Xu YM, Wang CD, Lai JH (2016) Weighted multi-view clustering with feature selection. Pattern Recogn 53:25–35

    Article  Google Scholar 

  46. Yu J, Hong C, Rui Y, Tao D (2017) Multi-task autoencoder model for recovering human poses. IEEE Trans Ind Electron 65(6):5060–5068

    Article  Google Scholar 

  47. Yu J, Yang X, Gao F, Tao D (2017) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024. https://doi.org/10.1109/TCYB.2016.2591583

    Article  Google Scholar 

  48. Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016. https://doi.org/10.1109/TIFS.2016.2636090

    Article  Google Scholar 

  49. Zhang GY, Wang CD, Huang D, Zheng WS (2017) Multi-view collaborative locally adaptive clustering with Minkowski metric. Expert Syst Appl 86:307–320

    Article  Google Scholar 

  50. Zhang GY, Wang CD, Huang D, Zheng WS, Zhou YR (2018) TW-co-k-means: two-level weighted collaborative \(k\)-means for multi-view clustering. Knowl Based Syst 150:127–138

    Article  Google Scholar 

  51. Zhao J, Xie X, Xu X, Sun S (2017) Multi-view learning overview: recent progress and new challenges. Inf Fusion 38:43–54. https://doi.org/10.1016/j.inffus.2017.02.007. http://www.sciencedirect.com/science/article/pii/S1566253516302032

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengrong Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Z., Ma, Z. & Peng, W. Biomedical Data Analysis Based on Multi-view Intact Space Learning with Geodesic Similarity Preserving. Neural Process Lett 49, 1381–1398 (2019). https://doi.org/10.1007/s11063-018-9874-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9874-9

Keywords

Navigation