Skip to main content
Log in

Synchronizing Chaotic Systems with Uncertain Model and Unknown Interference Using Sliding Mode Control and Wavelet Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A method using sliding mode control (SMC) and wavelet neural networks (WNN) is proposed, investigated and exploited for synchronizing master and slave chaotic systems with uncertain model and unknown interference. In this paper, integral sliding surface and applying WNN for approximating uncertain model and unknown interference are further developed for designing adaptive sliding mode controller. Mexican hat wavelet function is used as activation function in WNN. The adaptive laws of network parameters are derived in the sense of Lyapunov stability analysis so that the tracking errors and convergence of the weights can be guaranteed. The error of synchronization of master–slave chaotic systems can be reached desired level in limited time by using Li function in SMC. Illustrative examples are provided and analyzed to substantiate the efficacy of proposed method for solving the problem of synchronizing master and slave chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen HK (2005) Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solitons Fractals 23(4):1245–1251

    Article  MATH  Google Scholar 

  3. Cao J, Ho DWC, Yang Y (2009) Projective synchronization of a class of delayed chaotic systems via impulsive control. Phys Lett A 373(35):3128–3133

    Article  MathSciNet  MATH  Google Scholar 

  4. Yassen MT (2006) Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons Fractals 27(2):537–548

    Article  MathSciNet  MATH  Google Scholar 

  5. Aghababa MP, Feizi H (2012) Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances. Trans Inst Meas Control 34(8):990–997

    Article  Google Scholar 

  6. Ouannas A, Odibat Z, Shawagfeh N et al (2017) Universal chaos synchronization control laws for general quadratic discrete systems. Appl Math Model 45:636–641

    Article  MathSciNet  Google Scholar 

  7. Yih-Yuh C (1996) Randomly synchronizing chaotic systems: condensed matter and statistical physics. Progress Theoret Phys 96(4):683–692

    Article  Google Scholar 

  8. Khadra A, Liu XZ, Shen X (2005) Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9):1491–1502

    Article  MathSciNet  MATH  Google Scholar 

  9. Naderi B, Kheiri H, Heydari A et al (2016) Optimal synchronization of complex chaotic t-systems and its application in secure communication. J Control Autom Electr Syst 27(4):379–390

    Article  Google Scholar 

  10. Carroll TL, Pecora LM (2002) Synchronizing chaotic circuits. IEEE Trans Circuits Syst 38(4):453–456

    Article  MATH  Google Scholar 

  11. Junwei S, Xingtong Z, Jie F et al (2018) Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn 94(4):2879–2887

    Article  Google Scholar 

  12. Li WL (2008) On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun Nonlinear Sci Numer Simul 13(7):1246–1255

    Article  MathSciNet  MATH  Google Scholar 

  13. Haeri M, Emadzadeh A (2007) Synchronizing different chaotic systems using active sliding mode control. Chaos, Solitons Fractals 31(1):119–129

    Article  MathSciNet  MATH  Google Scholar 

  14. Tavazoei MS, Haeri M (2007) Determination of active sliding mode controller parameters in synchronizing different chaotic systems. Chaos, Solitons Fractals 32(2):583–591

    Article  Google Scholar 

  15. Fuh CC (2009) Optimal control of chaotic systems with input saturation using an input-state linearization scheme. Commun Nonlinear Sci Numer Simul 14(8):3424–3431

    Article  Google Scholar 

  16. Tan X, Zhang J, Yang Y (2003) Synchronizing chaotic systems using backstepping design. Chaos, Solitons Fractals 16(1):37–45

    Article  MathSciNet  MATH  Google Scholar 

  17. Li GH, Zhou SP, Yang K (2006) Generalized projective synchronization between two different chaotic systems using active backstepping control. Phys Lett A 355(4):326–330

    Article  Google Scholar 

  18. Chen HH, Sheu GJ, Lin YL et al (2009) Chaos synchronization between two different chaotic systems via nonlinear feedback control. Nonlinear Anal Theory Methods Appl 70(12):4393–4401

    Article  MathSciNet  MATH  Google Scholar 

  19. Mobayen S (2018) Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control. ISA Trans 77:100–111

    Article  Google Scholar 

  20. Ji DH, Jeong SC, Ju HP et al (2012) Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer. Nonlinear Dyn 69(3):1125–1136

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin D, Wang X, Nian F et al (2010) Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16–18):2873–2881

    Article  Google Scholar 

  22. Barker AE (2012) Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys Scr 85(3):438–445

    Google Scholar 

  23. Mobayen S, Tchier F (2017) Synchronization of a class of uncertain chaotic systems with lipschitz nonlinearities using state-feedback control design: a matrix inequality approach. Asian J Control 20(1):71–85

    Article  MathSciNet  MATH  Google Scholar 

  24. Mobayen S (2018) Design of novel adaptive sliding mode controller for perturbed Chameleon hidden chaotic flow. Nonlinear Dyn 92:1539–1553

    Article  MATH  Google Scholar 

  25. Mofid Omid, Mobayen Saleh (2018) Adaptive synchronization of fractional-order quadratic chaotic flows with nonhyperbolic equilibrium. J Vib Control 24(21):4971–4987

    MathSciNet  Google Scholar 

  26. Saleh M, Jun M (2018) Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay. Chaos, Solitons Fractals 114:46–54

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun J, Wu Y, Cui G et al (2017) Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 88(3):1677–1690

    Article  MATH  Google Scholar 

  28. Sun J, Wang Y, Wang Y et al (2016) Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn 85(2):1105–1117

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan JJ, Liao TL (2017) Discrete sliding mode control for hybrid synchronization of continuous Lorenz systems with matched/unmatched disturbances. Trans Inst Meas Control 40(5):1417–1424

    Article  Google Scholar 

  30. Fu YY, Wu CJ, Ko CN et al (2011) Radial basis function networks with hybrid learning for system identification with outliers. Appl Soft Comput 11(3):3083–3092

    Article  Google Scholar 

  31. Fernández-Navarro F, Hervás-Martínez C, Sanchez-Monedero J et al (2011) MELM-GRBF: a modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing 74(16):2502–2510

    Article  Google Scholar 

  32. Zhang Y, Yang Y, Tan N et al (2011) Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse. Computing 92(2):97–121

    Article  MathSciNet  MATH  Google Scholar 

  33. Liao B, Zhang Y (2014) From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion. Neurocomputing 133(8):512–522

    Article  Google Scholar 

  34. Shuai L, Li Y, Zheng W (2013) A class of finite-time dual neural networks for solving quadratic programming problems and its k k mathContainer Loading Mathjax -winners-take-all application. Neural Netw 39(39):27–39

    MATH  Google Scholar 

  35. Wang H, Han ZZ, Xie QY et al (2009) Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun Nonlinear Sci Numer Simul 14(5):2239–2247

    Article  Google Scholar 

  36. Cordova J, Yu W (2012) Two types of haar wavelet neural networks for nonlinear system identification. Neural Process Lett 35(3):283–300

    Article  Google Scholar 

  37. Pindoriya NM, Singh SN, Singh SK (2008) An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Trans Power Syst 23(3):1423–1432

    Article  Google Scholar 

  38. Zhang Q (1997) Using wavelet network in nonparametric estimation. IEEE Trans Neural Netw 8(2):227

    Article  Google Scholar 

  39. Pai Ming-Chang (2016) RBF-based discrete sliding mode control for robust tracking of uncertain time-delay systems with input nonlinearity. Complexity 21(6):194–201

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous peer reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Yang, Z. & Peng, K. Synchronizing Chaotic Systems with Uncertain Model and Unknown Interference Using Sliding Mode Control and Wavelet Neural Networks. Neural Process Lett 50, 2547–2565 (2019). https://doi.org/10.1007/s11063-019-10034-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10034-8

Keywords

Navigation