Skip to main content

Advertisement

Log in

Pairwise Generalization Network for Cross-Domain Image Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In recent years, convolutional neural networks have received increasing attention from the computer vision and machine learning communities. Due to the differences in the distribution, tone and brightness of the training domain and test domain, researchers begin to focus on cross-domain image recognition. In this paper, we propose a Pairwise Generalization Network (PGN) for addressing the problem of cross-domain image recognition where Instance Normalization and Batch Normalization are added to enhance their abilities in the original domain and to expand to the new domain. Meanwhile, the Siamese architecture is utilized in the PGN to learn an embedding subspace that is discriminative, and map positive sample pairs aligned and negative sample pairs separated, which can work well even with only few labeled target data samples. We also add residual architecture and MMD loss for the PGN model to further improve its performance. Extensive experiments on two different public benchmarks show that our PGN solution significantly outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. NIPS

  2. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. NIPS

  3. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille A (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI

  4. Tzeng E, Hoffman J, Darrell T, Saenko K (2015) Simultaneous deep transfer across domains and tasks. In: ICCV

  5. Koniusz P, Tas Y, Porikli F (2017) Domain adaptation by mixture of alignments of second- or higher-order scatter tensors. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  6. Gao Z, Han TT, Zhu L, Zhang H, Wang Y (2018) Exploring the cross-domain action recognition problem by deep feature learning and cross-domain learning. IEEE Access 6:68989–69008. https://doi.org/10.1109/ACCESS.2018.2878313

    Article  Google Scholar 

  7. Liu M-Y, Tuzel O (2016) Coupled generative adversarial networks. In: Advances in neural information processing systems, pp 469–477

  8. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  9. Yao T, Pan Y, Ngo C-W, Li H, Mei T (2015) Semi-supervised domain adaptation with subspace learning for visual recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  10. Haeusser P, Frerix T, Mordvintsev A, et al (2017) Associative domain adaptation. In: ICCV, 2017: 2784–2792

  11. Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210. https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  12. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition (CVPR)

  13. Long M, Wang J, Ding G, et al. (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2200–2207

  14. Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer joint matching for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition (CVPR)

  15. Daum III H (2009) Frustratingly easy domain adaptation. CoRR, arXiv:0907.1815

  16. Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified deep supervised domain adaptation and generalization. In: The IEEE international conference on computer vision (ICCV), pp 5715–5725

  17. Long M, Cao Y, Wang J, et al. (2015) Learning transferable features with deep adaptation networks. In: International conference on machine learning, 97–105

  18. Lanckriet GRG, Cristianini N, Ghaoui LE, Bartlett P, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72

    MathSciNet  MATH  Google Scholar 

  19. Duan L, Tsang IW, Xu D (2012) Domain transfer multiple kernel learning. IEEE Trans Pattern Anal Mach Intell 34(3):465–479

    Article  Google Scholar 

  20. Borgwardt KM et al (2006) Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings of international conference on intelligence system molecular biology, Fortaleza, Brazil, 49–57

  21. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky VS (2016) Domain-adversarial training of neural networks. J Mach Learn Res

  22. Bousmalis K, Trigeorgis G, Silberman N, Erhan D, Krishnan D (2016) Domain separation networks. In: Annual conference on neural information processing systems (NIPS)

  23. Long M, Wang J, Jordan MI (2016) Deep transfer learning with joint adaptation networks. CoRR arXiv:1605.06636

  24. Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: ICCV 2011, vol, 24, no. 4, 999–1006 (2011)

  25. Fernando B, Habrard A, Sebban M, et al (2014) Unsupervised visual domain adaptation using subspace alignment. In: IEEE international conference on computer vision. IEEE, 2960–2967

  26. Kulis B, Saenko K, Darrell T (2011) What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, 1785–1792

  27. Baktashmotlagh M, Harandi MT, Lovell BC, et al (2013) Unsupervised domain adaptation by domain invariant projection. In: IEEE International conference on computer vision. IEEE Computer Society, 769–776

  28. Aytar Y, Zisserman A (2011) Tabula rasa: model transfer for object category detection. In: Computer vision (ICCV), 2011 IEEE International Conference on. IEEE, 2252–2259

  29. Becker CJ, Christoudias CM, Fua P (2013) Non-linear domain adaptation with boosting. In: Advances in neural information processing systems, 485–493

  30. Bergamo A, Torresani L (2010) Exploiting weakly-labeled web images to improve object classification: a domain adaptatio napproach. In: Advances in neural information processing systems, 181–189

  31. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 1, 539–546. IEEE

  32. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR, San Diego, California, USA

  33. Varior RR, Shuai B, Lu J, Xu D, Wang G (2016) A siamese long short-term memory architecture for human reidentification. In: European conference on computer vision. Springer, Berlin, 135–153

  34. Kumar B, Carneiro G, Reid I, et al (2016) Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 5385–5394

  35. Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: Computer vision–ECCV 2016 workshops, Springer, Berlin, 443–450

  36. Rozantsev A, Salzmann M, Fua P (2016) Beyond sharing weights for deep domain adaptation. arXiv preprint arXiv:1603.06432

  37. Rozantsev A, Salzmann M, Fua P (2018) Residual parameter transfer for deep domain adaptation. In: CVPR

  38. Blanchard G, Lee G, Scott C (2011) Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in neural information processing systems, 2178–2186

  39. Muandet K, Balduzzi D, Scholkopf B (2013) Domain generalization via invariant feature representation. In: ICML(1), 10–18

  40. Ghifary M, Bastiaan Kleijn W, Zhang M, Balduzzi D (2015) Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE international conference on computer vision, 2551–2559

  41. Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2017) Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell

  42. Xu Z, Li W, Niu L, Xu D (2014) Exploiting low-rank structure from latent domains for domain generalization. In: ECCV, 628–643

  43. Niu L, Li W, Xu D, Cai J (2017) An exemplar-based multiview domain generalization framework for visual recognition. IEEE Trans Neural Netw Learn Syst 29(2):259–272

    Article  Google Scholar 

  44. Niu L, Li W, Xu D (2016) Multi-view domain generalization for visual recognition. In: IEEE International conference on computer vision. IEEE, 4193–4201 (2016)

  45. Khosla A, Zhou T, Malisiewicz T, Efros AA, Torralba A (2012) Undoing the damage of dataset bias. In: European conference on computer vision. Springer, Berlin, 158–171

  46. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML

  47. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A, et al (2015) Going deeper with convolutions. CVPR

  48. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. CVPR

  49. Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. CVPR

  50. He X, He Z, Song J et al. (2018) NAIS: neural attentive item similarity model for recommendation. IEEE Trans Knowl Data Eng 1–1

  51. Zhang H, Kyaw Z, Yu J, et al (2017) PPR-FCN: weakly supervised visual relation detection via parallel pairwise R-FCN

  52. Chen J, Zhang H, He X, et al (2017) Attentive collaborative filtering: multimedia recommendation with item- and component-level attention. In: International ACM SIGIR conference on research and development in information retrieval

  53. Cheng Z, Chang X, Zhu L et al (2018) MMALFM: explainable recommendation by leveraging reviews and images. ACM Trans Inf Syst

  54. Gao Z, Wang DY, Xue YB, Xu GP, Zhang H, Wang YL (2018) 3D object recognition based on pairwise multi-view convolutional neural networks. J Vis Commun Image Represent 56:305–315

    Article  Google Scholar 

  55. Gao Z, Wang D, Wan SH, Zhang H, Wang YL (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrieval. Future Gener Comput Syst 94:641–653

    Article  Google Scholar 

  56. Nie W, Liu A, Gao Y, Su Y (2018) Hyper-clique graph matching and applications. In: IEEE transactions on circuits and systems for video technology. https://doi.org/10.1109/TCSVT.2018.2852310

  57. Nie W, Cheng H, Su Y (2017) Modeling temporal information of mitotic for mitotic event detection. IEEE Trans Big Data, (99): 1–1

  58. Liu AA, Nie WZ, Yue G et al (2017) View-based 3-D model retrieval: a benchmark. IEEE Trans Cybern 48(3):916–928

    Google Scholar 

  59. Gao Z, Zhang H, Xu GP, Xue YB, Hauptmannc AG (2015) Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition. Signal Process 112:83–97

    Article  Google Scholar 

  60. Ulyanov D, Vedaldi A, Lempitsky V (2017) Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. CVPR

  61. Dumoulin V, Shlens J, Kudlur M (2017) A learned representation for artistic style. ICLR

  62. Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instance normalization. ICCV

  63. Pan X, Luo P, Shi J, et al (2018) Two at once: enhancing learning and generalization capacities via IBN-Net

  64. Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: ECCV, 213–226 (2010)

  65. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  66. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554

    Article  Google Scholar 

  67. Fernando B, Tommasi T, Tuytelaarsc T (2015) Joint cross-domain classification and subspace learning for unsupervised adaptation. Pattern Recogit Lett 65:60–66

    Article  Google Scholar 

  68. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. IJCV

  69. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: The IEEE conference on computer vision and pattern recognition (CVPR)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China (Nos. 61872270, 61572357, 61202168), Opening Foundation of Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, China. Tianjin Municipal Natural Science Foundation (No. 18JCYBJC85500).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.B., Han, T.T. & Gao, Z. Pairwise Generalization Network for Cross-Domain Image Recognition. Neural Process Lett 52, 1023–1041 (2020). https://doi.org/10.1007/s11063-019-10041-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10041-9

Keywords

Navigation