Skip to main content
Log in

Neural Network-Based Hybrid Position/Force Tracking Control for Robotic Systems Without Velocity Measurement

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a hybrid position/force tracking control scheme based on neural network observer is proposed for robotic systems with uncertain parameters and external disturbances. First, an observer based on neural network is designed to estimate joint velocities. Then, a neural network-based adaptive hybrid position/force controller is proposed based on the observed joint velocities. By using strict positive real method and Lyapunov stability theory, it is proved that all the signals of the closed-loop system are ultimately uniformly bounded. Finally, the simulation tests on a two-link manipulator are conducted. The simulation results show the feasibility and effectiveness of the control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. ASME J Dyn Syst Meas Control 103(2):126–133

    Article  Google Scholar 

  2. Lozano R, Brogliato B (1992) Adaptive hybrid force-position control for redundant manipulators. IEEE Trans Autom Control 37(10):1501–1505

    Article  MathSciNet  Google Scholar 

  3. Kwan CM (1995) Hybrid force/position control for manipulators with motor dynamics using a sliding-adaptive approach. IEEE Trans Autom Control 40:963–968

    Article  MathSciNet  Google Scholar 

  4. Bassi E, Benzi F, Capisani LM, Cuppone D (2009) Hybrid position/force sliding mode control of a class of robotic manipulators. In: IEEE Conference on Decision & Control, pp 2966–2971

  5. Chen ZH, Chen L (2011) Dynamics for dual-arm space robot with closed-chain and hybrid force and position control for grasped object based on sliding-mode compensation. Eng Mech 28(5):226–232

    Google Scholar 

  6. Peng J, Yang Z, Wang Y, Zhang F, Liu Y (2019) Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Trans 92:166–179

    Article  Google Scholar 

  7. Peng J, Wang J, Wang Y (2011) Neural network based robust hybrid control for robotic system: an \(H_{\infty }\) approach. Nonlinear Dyn 65(4):421–431

    Article  MathSciNet  Google Scholar 

  8. Mohajerpoor R, Rezaei M, Talebi A et al (2012) A robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc Inst Mech Eng Part I J Syst Control Eng 226(4):509–522

    Article  Google Scholar 

  9. Singh HP (2013) Stability analysis of robust adaptive hybrid position/force controller for robot manipulators using neural network with uncertainties. Neural Comput Appl 22(7–8):1745–1755

    Article  Google Scholar 

  10. Zhou F, Li Y, Liu G (2017) Robust decentralized force/position fault-tolerant control for constrained reconfigurable manipulators without torque sensing. Nonlinear Dyn 89(3):955–969

    Article  Google Scholar 

  11. Touati Y, Djouani K, Amirat Y (2004) Neuro-fuzzy based approach for hybrid force/position robot control. Integr Comput-Aided Eng 11(1):85–98

    Article  Google Scholar 

  12. Canul RC, Garcia-Hernandez R, Rullan-Lara JL et al (2014) Decentralized adaptive fuzzy control applied to a robot manipulator. Adv Trends Soft Comput 314:123–135

    Article  Google Scholar 

  13. Wen S, Yu H, Zhang B et al (2017) Fuzzy identification and delay compensation based on the force/position control scheme of the 5-DOF redundantly actuated parallel robot. Int J Fuzzy Syst 19(1):124–140

    Article  Google Scholar 

  14. Peng J, Rickey D (2019) Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst Appl 120:239–252

    Article  Google Scholar 

  15. Karayiannidis Y, Rovithakis G, Doulgeri Z (2007) Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control. Automatica 43(7):1281–1288

    Article  MathSciNet  Google Scholar 

  16. Peng J, Yang Z, Ma T (2019) Position/force tracking impedance control for robotic systems with uncertainties based on adaptive Jacobian and neural network. Complexity 2019:1–16

    MATH  Google Scholar 

  17. Kumar N, Panwar V, Sukavanam N, Sharma SP, Borm JH (2011) Neural network based hybrid force/position control for robot manipulators. Int J Precis Eng Manuf 12(3):419–426

    Article  Google Scholar 

  18. Ghajar M-H, Keshmiri M, Bahrami J (2018) Neural-network-based robust hybrid force/position controller for a constrained robot manipulator with uncertainties. Trans Inst Meas Control 40(5):1625–1636

    Article  Google Scholar 

  19. Rani K, Kumar N (2018) Design of intelligent hybrid force and position control of robot manipulator. Procedia Comput Sci 125:42–49

    Article  Google Scholar 

  20. Mills JK, Goldenberg AA (1989) Force and position control of manipulators during constrained motion tasks. IEEE Trans Robot Autom 5(1):30–46

    Article  Google Scholar 

  21. Yoshikawa T, Sudou A (1990) Dynamic hybrid position/force control of robot manipulators: on-line estimation of unknown constraint. IEEE Trans Robot Autom 2:1231–1236

    Article  Google Scholar 

  22. Ravandi AK, Khanmirza E, Daneshjou K (2018) Hybrid force/position control of robotic arms manipulating in uncertain environment based on adaptive fuzzy sliding mode control. Appl Soft Comput 70:864–874

    Article  Google Scholar 

  23. Yu W, Li XO (2006) PD control of robot with velocity estimation and uncertainties compensation. Int J Robot Autom 21(1):1–9

    Google Scholar 

  24. Su Y, Muller PC, Zheng C (2007) A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Trans Autom Control 52(7):1340–1345

    Article  MathSciNet  Google Scholar 

  25. Goléa N, Goléa A, Barra K et al (2008) Observer-based adaptive control of robot manipulators: fuzzy systems approach. Appl Soft Comput 8(1):778–787

    Article  Google Scholar 

  26. Peng J, Liu Y, Wang J (2014) Fuzzy adaptive output feedback control for robotic systems based on fuzzy adaptive observer. Nonlinear Dyn 78(2):789–801

    Article  Google Scholar 

  27. Chaudhary H, Parashar A, Prasad R et al (2014) Velocity observer based fuzzy PD+I based hybrid force/position control of an industrial robot. In Engineering and computational sciences, pp 1–6

  28. Bouakrif F (2017) Trajectory tracking control using velocity observer and disturbances observer for uncertain robot manipulators without tachometers. Meccanica 52(4–5):1–15

    MathSciNet  MATH  Google Scholar 

  29. Yang Z, Peng J, Liu Y (2019) Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer. Neurocomputing 331:263–280

    Article  Google Scholar 

  30. Kim YH, Lewis FL, Abdallah CT (1997) A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatica 33(8):1539–1543

    Article  MathSciNet  Google Scholar 

  31. Sun F, Sun Z, Woo PY (2001) Neural network-based adaptive controller design of robotic manipulators with an observer. IEEE Trans Neural Networks 12(1):54–67

    Article  MathSciNet  Google Scholar 

  32. Abdollahi F, Talebi HA, Patel RV (2006) A stable neural network-based observer with application to flexible-joint manipulators. IEEE Trans Neural Networks 17(1):118–129

    Article  Google Scholar 

  33. Tao G, Ioannou PA (1988) Strictly positive real matrices and the Lefschetz–Kalman–Yakubovich lemma. IEEE Trans Autom Control 33(12):1183–1185

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding received from the National Natural Science Foundation of China (61773351, 61603345), the Program for Science & Technology Innovation Talents in Universities of Henan Province (20HASTIT031), the Training Plan for University’s Young Backbone Teachers of Henan Province (2017GGJS004), the Natural Science Foundation of Henan Province (162300410260) and the China Scholarship Council (201907045008) to conduct this research investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhu Peng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

Considering the following Lyapunov function,

$$\begin{aligned} V_o=\frac{1}{2}{\tilde{x}}^{{\mathrm {T}}}P{\tilde{x}}+\frac{1}{2} {\tilde{W}}_o^{{\mathrm {T}}}{\varGamma }_{W_o}\dot{{\tilde{W}}}_o \end{aligned}$$
(63)

Taking the differentiation of Eq. (63) and substituting Eqs. (21) and (26), yields

$$\begin{aligned} {\dot{V}}_o&= \frac{1}{2}\dot{{\tilde{x}}}^{{\mathrm {T}}}P{\tilde{x}}+ \frac{1}{2}{\tilde{x}}^{{\mathrm {T}}}P\dot{{\tilde{x}}}+{\tilde{W}}_o^{{\mathrm {T}}} {\varGamma }_{W_o}\dot{{\tilde{W}}}_o\nonumber \\&= \frac{1}{2}{\tilde{x}}^{{\mathrm {T}}}(A_o^{{\mathrm {T}}}P+PA_o){\tilde{x}} +\frac{1}{2}U_o^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P{\tilde{x}}+\frac{1}{2} {\tilde{x}}^{{\mathrm {T}}}PB_oU_o+{\tilde{W}}_o^{{\mathrm {T}}}{\varGamma }_{W_o} \dot{{\tilde{W}}}_o\nonumber \\&= -\frac{1}{2}{\tilde{x}}^{{\mathrm {T}}}Q{\tilde{x}}+U_o^{{\mathrm {T}}} B_o^{{\mathrm {T}}}P{\tilde{x}}+{\tilde{W}}_o^{{\mathrm {T}}} {\varGamma }_{W_o}\dot{{\tilde{W}}}_o \end{aligned}$$
(64)

According to Eq. (20), we can obtain,

$$\begin{aligned}&U_o^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P{\tilde{x}}+{\tilde{W}}_o^{{\mathrm {T}}} {\varGamma }_{W_o}\dot{{\tilde{W}}}_o\nonumber \\&\quad = [{\tilde{W}}^{{\mathrm {T}}}_o\xi _o(x_1,{\hat{x}}_2)-M^{-1}(x_1) \tau _d-M^{-1}(x_1){\varDelta }M(x_1) M^{-1}_0(x_1)(\tau -\tau _e)\nonumber \\&\qquad +\varepsilon _o(x_1,x_2)-v_o-W^{{\mathrm {T}}}_o\tilde{\xi _o}(x_1,x_2, {\hat{x}}_2)]^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P{\tilde{x}}+ {\tilde{W}}_o^{{\mathrm {T}}}{\varGamma }_{W_o}\dot{{\tilde{W}}}_o\nonumber \\&\quad = [{\tilde{W}}^{{\mathrm {T}}}_o\xi _o(x_1,{\hat{x}}_2)]^{{\mathrm {T}}} B_o^{{\mathrm {T}}}P{\tilde{x}}+{\tilde{W}}_o^{{\mathrm {T}}}{\varGamma }_{W_o} \dot{{\tilde{W}}}_o+[-M^{-1}(x_1){\varDelta }M(x_1) M^{-1}_0(x_1)(\tau -\tau _e)\nonumber \\&\qquad -M^{-1}(x_1)\tau _d-W^{{\mathrm {T}}}_o\tilde{\xi _o}(x_1,x_2,{\hat{x}}_2) +\varepsilon _o(x_1,x_2)-v_o]^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P{\tilde{x}} \end{aligned}$$
(65)

Now, using the updating laws Eq. (27), the facts \(\dot{{\tilde{W}}}=-\dot{{\hat{W}}}\) and \(B_oP^{{\mathrm {T}}}{\tilde{x}}=C_o{\tilde{x}}={\tilde{x}}_1\), we can obtain,

$$\begin{aligned}{}[{\tilde{W}}^{{\mathrm {T}}}_o\xi _o(x_1,{\hat{x}}_2)]^{{\mathrm {T}}} B_o^{{\mathrm {T}}}P{\tilde{x}}+{\tilde{W}}_o^{{\mathrm {T}}} {\varGamma }_{W_o}\dot{{\tilde{W}}}_o \le 0 \end{aligned}$$
(66)

According to inequality (25) and Eq. (28), we can obtain,

$$\begin{aligned}&[-M^{-1}(x_1){\varDelta }M(x_1) M^{-1}_0(x_1)(\tau -\tau _e)-M^{-1}(x_1) \tau _d-W^{{\mathrm {T}}}_o\tilde{\xi _o}(x_1,x_2,{\hat{x}}_2)\nonumber \\&\quad +\varepsilon _o(x_1,x_2)-v_o]^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P {\tilde{x}} \le 0 \end{aligned}$$
(67)

Therefore,

$$\begin{aligned} U_o^{{\mathrm {T}}}B_o^{{\mathrm {T}}}P{\tilde{x}}+\tilde{W_o}^{{\mathrm {T}}} {\varGamma }_{W_o}\dot{\tilde{W_o}}\le 0 \end{aligned}$$
(68)

Substituting Eq. (68) into Eq. (64) yields,

$$\begin{aligned} {\dot{V}}_o \le -\frac{1}{2}{\tilde{x}}^{{\mathrm {T}}}Q{\tilde{x}} \end{aligned}$$
(69)

This implies \(V_o>0\) and \({\dot{V}}_o \le 0\), the stability of the observer can be then ensured so that \({\tilde{x}}\) and \({\tilde{W}}_o\) are bounded.

Appendix B: Proof of Theorem 2

Considering the following Lyapunov function,

$$\begin{aligned} V_c=\frac{1}{2}{\hat{s}}^{{\mathrm {T}}}M_0(x_1){\hat{s}}+ \frac{1}{2}{\tilde{W}}_c^{{\mathrm {T}}}{\varGamma }_{W_c}\dot{{\tilde{W}}}_c \end{aligned}$$
(70)

Taking the differentiation of Eq.(70) yields

$$\begin{aligned} {\dot{V}}_c&= \frac{1}{2}{\hat{s}}^{{\mathrm {T}}}{\dot{M}}_0(x_1){\hat{s}}+ {\hat{s}}^{{\mathrm {T}}}M_0(x_1)\dot{{\hat{s}}}+{\tilde{W}}_c^{{\mathrm {T}}} {\varGamma }_{W_c}\dot{{\tilde{W}}}_c \end{aligned}$$
(71)

Substituting Eqs. (54) and (56) into Eq. (71), and considering the fact \(\dot{{\tilde{W}}}_c=-\dot{{\hat{W}}}_c\), we can obtain,

$$\begin{aligned} {\dot{V}}_c&= \frac{1}{2}{\hat{s}}^{{\mathrm {T}}}{\dot{M}}_0(x_1){\hat{s}} +{\hat{s}}^{{\mathrm {T}}}\{-[K_d+C_0(x_1,x_2)]{\hat{s}}- {\tilde{W}}^{{\mathrm {T}}}_c\xi _c(x_1,{\hat{x}}_2)+v_c\nonumber \\&\quad -W^{{\mathrm {T}}}_c{\tilde{\xi }}_c(x_1,x_2,{\hat{x}}_2)- \varepsilon _c(x_1,x_2)-\tau _d\}+{\tilde{W}}_c^{{\mathrm {T}}}\xi _c(x_1, {\hat{x}}_2){\hat{s}}^{{\mathrm {T}}}\nonumber \\&=\frac{1}{2}{\hat{s}}^{{\mathrm {T}}}[{\dot{M}}_0(x_1)-2C_0(x_1,x_2)] {\hat{s}}-{\hat{s}}^{{\mathrm {T}}}K_d{\hat{s}}+{\hat{s}}^{{\mathrm {T}}} \{v_c-\varepsilon _c(x_1,x_2)\nonumber \\&\quad -W^{{\mathrm {T}}}_c{\tilde{\xi }}_c(x_1,x_2,{\hat{x}}_2)-\tau _d\} \end{aligned}$$
(72)

According to property 2, we have,

$$\begin{aligned} {\dot{V}}_c = -{\hat{s}}^{{\mathrm {T}}}K_d{\hat{s}}+{\hat{s}}^{{\mathrm {T}}} [v_c-\varepsilon _c(x_1,x_2)-W^{{\mathrm {T}}}_c{\tilde{\xi }}_c (x_1,x_2,{\hat{x}}_2)-\tau _d] \end{aligned}$$
(73)

Substituting Eqs. (55) and (57) into Eq. (73), we can obtain,

$$\begin{aligned} {\dot{V}}_c \le -{\hat{s}}^{{\mathrm {T}}}K_d{\hat{s}} \end{aligned}$$
(74)

It can be concluded that the closed-loop system is asymptotically stable. Integrating Eq. (74) from time \(t=0\) to \(t=T\) yields,

$$\begin{aligned} \int ^{{\mathrm {T}}}_0\parallel {\hat{s}}\parallel ^2dt \le \frac{V_c(0)-V_c(T)}{\lambda _{{\mathrm {min}}}(K_d)} \end{aligned}$$
(75)

Using Eq. (70), we can obtain,

$$\begin{aligned} V_c(0)=\frac{1}{2}{\hat{s}}^{{\mathrm {T}}}(0)M_0(x_1){\hat{s}}(0) +\frac{1}{2}{\tilde{W}}_c^{{\mathrm {T}}}(0){\varGamma }_{W_c}\dot{{\tilde{W}}}_c(0) \end{aligned}$$
(76)

According to inequality (75), we have,

$$\begin{aligned} \parallel {\hat{s}}\parallel \le \sqrt{\frac{{\hat{s}}^{{\mathrm {T}}}(0) M_0(x_1) {\hat{s}}(0)+ {\tilde{W}}_c^{{\mathrm {T}}}(0) {\varGamma }_{W_c}\dot{{\tilde{W}}}_c(0)}{2\lambda _{{\mathrm {min}}}(K_d)}} \end{aligned}$$
(77)

This implies that \({\hat{s}}\) and \({\tilde{W}}_c\) are bounded. Since \(W_c\) is bounded, \({\hat{W}}_c\) is hence bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Ding, S., Yang, Z. et al. Neural Network-Based Hybrid Position/Force Tracking Control for Robotic Systems Without Velocity Measurement. Neural Process Lett 51, 1125–1144 (2020). https://doi.org/10.1007/s11063-019-10138-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10138-1

Keywords

Navigation