Skip to main content
Log in

Joint Reflectance Field Estimation and Sparse Representation for Face Image Illumination Preprocessing and Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Illumination preprocessing is an important ingredient for handling lighting variation face recognition challenge. Nonetheless, existing methods are usually designed to be independent of the face recognition methods and the interaction between them is not yet well explored. In this paper, we formulate the face image illumination preprocessing and recognition into a unified sparse representation framework and propose a novel joint reflectance field estimation and sparse representation (JRSR) method for face recognition under extreme lighting conditions. The proposed method separates the identify factor and the interfered illumination of a query sample simultaneously by one nonconvex sparse optimizing model. We also present an efficient approximation algorithm to solve JRSR in this paper. Evaluation on several face databases and the experimental results of face recognition with illumination variation clearly demonstrate the advantages of our proposed JRSR algorithm in illumination preprocessing efficiency and recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adini Y, Moses Y, Ullman S (1997) Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans Pattern Anal Mach Intell 19(7):721–732

    Article  Google Scholar 

  2. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, and Worek W (2005) Overview of the face recognition grand challenge. In: IEEE computer society conference on computer vision and pattern recognition, pp 947–954

  3. Han H, Shan S, Chen X, Gao W (2013) A comparative study on illumination preprocessing in face recognition. Pattern Recognit 46(6):1691–1699

    Article  Google Scholar 

  4. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  5. Wang H, Li SZ, and Wang Y (2004) Face recognition under varying lighting conditions using self quotient image. In: IEEE international conference on automatic face and gesture recognition, pp 819–824

  6. Chen T, Yin W, Zhou XS, Comaniciu D, Huang TS (2006) Total variation models for variable lighting face recognition. IEEE Trans Pattern Anal Mach Intell 28(9):1519–1524

    Article  Google Scholar 

  7. Chen W, Er MJ, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans Syst Man Cybern Part B Cybern Publ IEEE Syste Man Cybern Soc 36(2):458

    Article  Google Scholar 

  8. Wei C, Wang W, Yang W, Liu J (2018) Deep retinex decomposition for low-light enhancement. In British machine vision conference

  9. Chen J, Zeng Z, Zhang R, Wang W, Zheng Y, Tian K (2019) Adaptive illumination normalization via adaptive illumination preprocessing and modified weber-face. Appl Intell 49:872–882

    Article  Google Scholar 

  10. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  11. Deng W, Hu J, Guo J (2012) Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans Pattern Anal Mach Intell 34(9):1864

    Article  Google Scholar 

  12. Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372

    Article  Google Scholar 

  13. Yang J, Zhang L, Xu Y, Yang J-Y (2012) Beyond sparsity: the role of l1-optimizer in pattern classification. Pattern Recognit 45(3):1104–1118

    Article  Google Scholar 

  14. Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1035

    Article  Google Scholar 

  15. Xu Y, Li X, Yang J, Lai Z, Zhang D (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern 44(10):1738–1746

    Article  Google Scholar 

  16. Cao F, Hu H, Lu J, Zhao J, Zhou Z, Wu J (2016) Pose and illumination variable face recognition via sparse representation and illumination dictionary. Knowl-Based Syst 107:117–128

    Article  Google Scholar 

  17. Yang J, Luo L, Qian J, Tai Y, Zhang F, Xu Y (2016) Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans Pattern Anal Mach Intell 39(1):156–171

    Article  Google Scholar 

  18. Qian J, Yang J, Zhang F, Lin Z (2015) Robust low-rank regularized regression for face recognition with occlusion. Pattern Recognit 48:3145–3159

    Article  Google Scholar 

  19. Jiang J, Ma J, Chen C, Jiang X, Zheng W (2017) Noise robust face image super-resolution through smooth sparse representation. IEEE Transa Cybern 47(11):3991–4002

    Article  Google Scholar 

  20. Lai Z, Mo D, Wong WK, Xu Y, Miao D, Zhang D (2017) Robust discriminant regression for feature extraction. IEEE Transa Cybern 48(8):2472–84

    Article  Google Scholar 

  21. Yang J, Luo L, Qian J, Tai Y, Zhang F, Xu Y (2017) Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans Pattern Anal Mach Intell 39(1):156–171

    Article  Google Scholar 

  22. Luo L, Yang J, Zhang B, Jiang J, Huang H (2018) Nonparametric bayesian correlated group regression with applications to image classification. IEEE Trans Neural Netw Learn Syst 29(11):5330–5344

    Article  MathSciNet  Google Scholar 

  23. Wen J, Lai Z, Zhan Y, Cui J (2016) The l2,1-norm-based unsupervised optimal feature selection with applications to action recognition. Pattern Recogn 60:515–530

    Article  Google Scholar 

  24. Zhuang L, Yang AY, Zhou Z, Sastry SS, Ma Y (2015) Single-sample face recognition with image corruption and misalignment via sparse illumination transfer. Int J Comput Vis 114(2–3):272–287

    Article  MathSciNet  Google Scholar 

  25. Land EH, Mccann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  26. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process Publi IEEE Signal Process Soc 6(3):451–62

    Article  Google Scholar 

  27. Xie X, Lam KM (2006) An efficient illumination normalization method for face recognition. Pattern Recognit Lett 27(6):609–617

    Article  Google Scholar 

  28. Gross R, and Brajovic V (2003) An image preprocessing algorithm for illumination invariant face recognition. In: International conference on audio-and video-based biometric person authentication, pp 10–18

  29. Malioutov DM, Cetin M, Willsky AS (2005) Homotopy continuation for sparse signal representation. In: Proceedings of EEE international conference on acoustics, speech, and signal processing, vol 5, pp v/733–v/736

  30. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  31. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  32. Hespanha JP, Naghshtabrizi P, Xu Y (2003) The cmu pose, illumination, and expression (pie) database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

  33. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 4778(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  34. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  35. Wiskott L, Fellous JM, Krüger N, Malsburg CVD (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their critical and constructive comments and suggestions. This work was supported by the The National Natural Science Foundation of China under Grant 61873106, National Nature Science Foundation of Jiangsu Province under Grant BK20171264, Jiangsu Qing Lan Project to Cultivate Middle-aged and Young Science Leaders, Jiangsu Six Talent Peak Project under Grants XYDXX-047, XYDXX-140, University Science Research General Research General Project of Jiangsu Province under Grant 18KJB520005, 19KJB520004, the Innovation Fund Project for Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education under Grant JYB201609, Lianyungang Hai Yan Plan under Grants 2018-ZD003, 2018 -QD-001, 2018-QD-012,the Science and Technology Project of Lianyungang High-tech Zone Under Grants ZD201910, ZD201912 and Natural Science Foundation Project of Huaihai Institute of Technology under Grant Z2017005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, W., Bo, L. et al. Joint Reflectance Field Estimation and Sparse Representation for Face Image Illumination Preprocessing and Recognition. Neural Process Lett 54, 3551–3564 (2022). https://doi.org/10.1007/s11063-020-10316-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10316-6

Keywords

Navigation