Skip to main content
Log in

A Non-invasive Approach to Identify Insulin Resistance with Triglycerides and HDL-c Ratio Using Machine learning

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Identification and quantification of insulin resistance require specific blood test which is complex, time-consuming, and much more invasive, making it difficult to track the changes daily. With the advancement in machine learning approaches, identification of insulin resistance can be carried out without clinical processes. In this work, insulin resistance is identified for individuals with triglycerides and HDL-c ratio using non-invasive techniques employing machine learning approaches. Eighteen parameters are used for identification purposes like age, sex, waist size, height, etc., and combinations of these parameters. Experiments are conducted over the CALERIE dataset. Each output of the attribute selection system is modeled over distinct calculations like logistic regression, CARTs, SVM, LDA, KNN, extra trees classifier. The proposed work is validated with a stratified cross-validation test. Results show that KNN and CatBoost show the best results with an accuracy of 74% and 73% respectively and 1% variance compared to 66% with Bernardini et al. and Stawiski et al. and 83% with Farran et al. With the proposed approach an individual can predict the insulin resistance and hence prospective chances of diabetes might be tracked daily using non-clinical approaches. While the same is not practically possible with clinical processes daily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

HDL-c:

High-density lipoprotein-c

CALERIE:

Comprehensive assessment of long-term effects of reducing intake of energy

CART:

Classification and regression trees

SVM:

Support vector machines

LDA:

Linear discriminant analysis

KNN:

K-nearest neighbour

References

  1. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17(122):1–14. https://doi.org/10.1186/s12933-018-0762-4

    Article  Google Scholar 

  2. Saeedi P, Petersohn I, Salpea P, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation. Diabetes Atlas Ed Diabetes Res Clin Pract 157(107843):1–10. https://doi.org/10.1016/j.diabres.2019.107843

    Article  Google Scholar 

  3. Freeman AM, Pennings N (2020 Jan) Insulin Resistance (Updated 2020 July 10). In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK507839/. Accessed October 5, 2020

  4. Woolcott OO, Bergman RN (2019) Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents. A cross-sectional study using NHANES. Sci Rep 9:15279. https://doi.org/10.1038/s41598-019-51701-z

    Article  Google Scholar 

  5. Global Report on Diabetes, WHO, ISBN 978 92 4 156525 7, 2016. https://www.who.int/diabetes/global-report/en/. Accessed March 1, 2020

  6. Ren X et al (2016) Association between triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in chinese patients with newly diagnosed type 2 diabetes mellitus. PLoS ONE. https://doi.org/10.1371/journal.pone.0154345

    Article  Google Scholar 

  7. Kamil ZIA, Jalaludin MY, Zin RMWM, Zain FM (2017) Triglyceride to HDL-C ratio is associated with insulin resistance in overweight and obese children. Sci Rep 7:40055. https://doi.org/10.1038/srep40055

    Article  Google Scholar 

  8. Kandhasamy JP, Balamurali S (2015) Performance analysis of classifier models to predict diabetes mellitus. Proc Comput Sci 47:45–51. https://doi.org/10.1016/j.procs.2015.03.182

    Article  Google Scholar 

  9. Tafa Z, Pervetica N, Karahoda B (2015) An intelligent system for diabetes prediction. In: Proceedings of the 2015; 4th mediterranean conference on embedded computing (MECO), Budva, Montenegro, pp 378–382

  10. Mercaldo F, Nardone V, Santone A (2017) Diabetes mellitus aected patients classification and diagnosis through machine learning techniques. Proc Comput Sci 112:2519–2528

    Article  Google Scholar 

  11. Negi A, Jaiswal V (2016) A first attempt to develop a diabetes prediction method based on different global datasets. In: Proceedings of the 2016 4th international conference on parallel, distributed and grid computing (PDGC),Waknaghat, India, pp 237–241

  12. Bernardini M, Morettini M, Romeo L, Frontoni E, Burattini L (2019) TyG-er: an ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records. Comput Biol Med 112:103358

    Article  Google Scholar 

  13. Yuvaraj N, SriPreethaa KR (2017) Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Clust Comput 22:1–9

    Article  Google Scholar 

  14. Olaniyi EO, Adnan K (2014) Onset diabetes diagnosis using artificial neural network. Int J Sci Eng Res 5:754–759

    Google Scholar 

  15. Soltani Z, Jafarian A (2016) A new artificial neural networks approach for diagnosing diabetes disease type II. Int J Adv Comput Sci Appl 7:89–94

    Google Scholar 

  16. Sarwar A, Sharma V (2013) Comparative analysis of machine learning techniques in prognosis of type II diabetes. AI Soc 29(1):123–129. https://doi.org/10.1007/s00146-013-0456-0

    Article  Google Scholar 

  17. Durairaj M, Kalaiselvi G (2015) Prediction of diabetes using back propagation algorithm. Int J Innov Technol 1:21–25

    Google Scholar 

  18. Maniruzzaman M, Kumar N, Menhazul Abedin M, Shaykhul Islam M, Suri HS, El-Baz AS, Suri JS (2017) Comparative approaches for classification of diabetes mellitus data: machine learning paradigm. Comput Methods Programs Biomed 152:23–34

    Article  Google Scholar 

  19. Mirshahvalad R, Zanjani NA (2017) Diabetes prediction using ensemble perceptron algorithm. In: Proceedings of the 2017 9th international conference on computational intelligence and communication networks (CICN), Girne, Cyprus, pp 190–194

  20. Sun X, Yu X, Liu J, Wang H (2017) Glucose prediction for type 1 diabetes using KLMS algorithm. In: Proceedings of the 2017 36th Chinese control conference (CCC), Liaoning, China, pp 1124–1128

  21. Sisodia D, Sisodia DS (2018) Prediction of diabetes using classification algorithms. Proc Comput Sci 132:1578–1585

    Article  Google Scholar 

  22. Ashiquzzaman A, Kawsar Tushar A, Rashedul Islam MD, Shon D, Kichang LM, Jeong-Ho P, Dong-Sun L, Jongmyon K (2018) Reduction of overfitting in diabetes prediction using deep learning neural network. In: Kim KJ, Kim H, Baek N (eds) IT convergence and security 2017, lecture notes in electrical engineering. Springer, Singapore, pp 449 35–43. https://doi.org/10.1007/978-981-10-6451-7_5

  23. Swapna G, Soman KP, Vinayakumar R (2018) Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Proc Comput Sci 132:1253–1262

    Article  Google Scholar 

  24. Mohebbi A, Aradóttir TB, Johansen AR, Bengtsson H, Fraccaro M, Mørup M (2017) A deep learning approach to adherence detection for type 2 diabetics. In: Proceedings of the 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Jeju, Korea, pp 2896–2899

  25. Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 6:26094

    Article  Google Scholar 

  26. Pham T, Tran T, Phung D, Venkatesh S (2017) Predicting healthcare trajectories from medical records. A deep learning approach. J Biomed Inform 69:218–229

    Article  Google Scholar 

  27. Askarzadeh A, Rezazadeh A (2013) Artificial neural network training using a new efficient optimization algorithm. Appl Soft Comput 13:1206–1213

    Article  Google Scholar 

  28. Rao NM, Kannan K, Gao XZ, Roy DS (2018) Novel classifiers for intelligent disease diagnosis with multi-objective parameter evolution. Comput Electr Eng 67:483–496

    Article  Google Scholar 

  29. Rahimloo P, Jafarian A (2016) Prediction of diabetes by using artificial neural network. logistic regression statistical model and combination of them. Bull Soc R Sci Liège 85:1148–1164

    Article  MathSciNet  MATH  Google Scholar 

  30. Gill NS, Mittal PA (2016) Computational hybrid model with two level classification using SVM and neural network for predicting the diabetes disease. J Theor Appl Inf Technol 87:1–10

    Google Scholar 

  31. NirmalaDevi M, Alias Balamurugan SA, Swathi UV (2013) An amalgam KNN to predict diabetes mellitus. In: Proceedings of the 2013 IEEE international conference ON emerging trends in computing, communication and nanotechnology (ICECCN), Tirunelveli, India, pp 691–695

  32. Gylling H, Hallikainen M, Pihlajamäki J, Simonen P, Kuusisto J, Laakso M, Miettinen TA (2010) Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity. Lessons from the METSIM Study. JLR J Lipid Res 51:2422–2427

    Article  Google Scholar 

  33. Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O (2012) Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol 176:108–116

    Article  Google Scholar 

  34. de Vries MA, Alipour A, Klop B, van de Geijn GJM, Janssen HW, Njo TL, van der Meulen N, Rietveld AP, Liem AH, Westerman EM, de Herder WW, Cabezas MC (2015) Glucose-dependent leukocyte activation in patients with type 2 diabetes mellitus, familial combined hyperlipidemia and healthy controls. Metabolism 64:213–217

    Article  Google Scholar 

  35. Lee DJ, Choi JS, Kim KM, Joo NS, Lee SH, Kim KN (2014) Combined effect of serum gamma-glutamyltransferase and uric acid on Framingham risk score. Arch Med Res 45:337–342. https://doi.org/10.1016/j.arcmed.2014.04.004

    Article  Google Scholar 

  36. Riaz S (2015) Study of protein biomarkers of diabetes mellitus type 2 and therapy with vitamin B1. J Diabetes Res 2015:150176. https://doi.org/10.1155/2015/150176

    Article  Google Scholar 

  37. Stawiski K, Pietrzak I, Młynarski W, Fendler W, Szadkowska A (2018) NIRCa: an artificial neural network-based insulin resistance calculator. Pediatric Diabetes 19(2):231–235. https://doi.org/10.1111/pedi.12551

    Article  Google Scholar 

  38. Choi BG, Rha SW, Kim SW, Kang JH, Park JY, Noh YK (2019) Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks. Yonsei Med J 60(2):191–199. https://doi.org/10.3349/ymj.2019.60.2.191

    Article  Google Scholar 

  39. Farran B, AlWotayan R, Alkandari H, Al-Abdulrazzaq D, Channanath A, Thanaraj TA (2019) Use of non-invasive parameters and machine-learning algorithms for predicting future risk of type 2 diabetes: a retrospective cohort study of health data from Kuwait. Front Endocrinol 10:624. https://doi.org/10.3389/fendo.2019.00624

    Article  Google Scholar 

  40. Kraus WE et al (2019) 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol 7:673–683

    Article  Google Scholar 

  41. Jones AG, Hattersley AT (2013) The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabetic Med 30:803–817. https://doi.org/10.1111/dme.12159

    Article  Google Scholar 

  42. Pagana KD, Pagana TJ, Pagana TN (2019) Mosby’s diagnostic and laboratory test reference, 14th edn. Elsevier, St. Louis

    MATH  Google Scholar 

  43. Zheng X, Huang B, Luo S, Yang D, Bao W, Li J, Yao B, Weng J, Yan J (2017) A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.2880

    Article  Google Scholar 

  44. Liu Y (2020) Artificial intelligence-based neural network for the diagnosis of diabetes: model development. JMIR Med Inform 8(5):e18682. https://doi.org/10.2196/18682

    Article  Google Scholar 

  45. Rodbard D (2017) Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Therap 19(S3):S25–S37. https://doi.org/10.1089/dia.2017.0035

    Article  Google Scholar 

  46. Ciudin A, Simó-Servat O, Hernández C, Arcos G, Diego S, Sanabria Á, Sotolongo Ó, Hernández I, Boada M, Simó R (2017) Retinal microperimetry: a new tool for identifying patients with type 2 diabetes at risk for developing Alzheimer disease. Diabetes 66(12):3098–3104. https://doi.org/10.2337/db17-0382

    Article  Google Scholar 

  47. Udler MS, McCarthy MI, Florez JC, Mahajan A (2019) Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev 40(6):1500–1520. https://doi.org/10.1210/er.2019-00088

    Article  Google Scholar 

  48. Balboa D, Prasad RB, Groop L, Otonkoski T (2019) Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia 62(8):1329–1336. https://doi.org/10.1007/s00125-019-4908-z

    Article  Google Scholar 

  49. Ramamurthy M, Krishnamurthi I, Vimal S, Robinson YH (2020) Deep learning based genome analysis and NGS-RNA LL identification with a novel hybrid model. BioSystems 197:104211. https://doi.org/10.1016/j.biosystems.2020.104211

    Article  Google Scholar 

  50. Sampaul Thomas GA, Robinson YH, Julie EG et al (2020) Diabetic retinopathy diagnostics from retinal images based on deep convolutional networks. Preprints.org. https://doi.org/10.20944/preprints202005.0493.v1

  51. Annamalai Suresh R, Udendhran SV (2020) Deep neural networks for multimodal imaging and biomedical applications. IGI Glob. https://doi.org/10.4018/978-1-7998-3591-2

    Article  Google Scholar 

  52. Geetha R, Sivasubramanian S, Kaliappan M et al (2019) Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier. J Med Syst 43:286. https://doi.org/10.1007/s10916-019-1402-6

    Article  Google Scholar 

  53. Pradeepa S, Manjula KR, Vimal S et al (2020) DRFS: detecting risk factor of stroke disease from social media using machine learning techniques. Neural Process Lett. https://doi.org/10.1007/s11063-020-10279-8

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the University of Petroleum and Energy Studies (UPES), Dehradun, India for conducting this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achyut Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakradar, M., Aggarwal, A., Cheng, X. et al. A Non-invasive Approach to Identify Insulin Resistance with Triglycerides and HDL-c Ratio Using Machine learning. Neural Process Lett 55, 93–113 (2023). https://doi.org/10.1007/s11063-021-10461-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10461-6

Keywords

Navigation