Skip to main content
Log in

NRIC: A Noise Removal Approach for Nonlinear Isomap Method

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Nonlinear manifold learning is a popular dimension reduction method that determines large and high dimensional datasets’ structures. However, these nonlinear manifold learning methods, including isomap and locally linear embedding, are sensitive to noise. In this paper, we focus on the noisy nonlinear manifold learning method, such as Isomap. The main problem of the Isomap is sensitivity to noise. Our proposed new method noise removal isomap with a classification (NRIC), is based on the local tangent space alignment (LTSA) algorithm with classification techniques to remove noises and optimize neighborhood structure Isomap. The primary purpose of the NRIC is to increase efficiency, reduce noise, and improve the performance of the graph. Experiments on the real-world datasets have shown that the NRIC method outperforms efficiently and maintains an accurate low dimensional representation of the noisy nonlinear manifold learning data. The results show that LTSA with classification techniques provides high accuracy, mean-precision, mean-recall, and areas under the (ROC) curve (AUC) of the high dimensional datasets and optimizes the graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Al-Shalabi R, Kanaan G, Gharaibeh M (2006) Arabic text categorization using knn algorithm. In: Proceedings of The 4th international multiconference on computer science and information technology, vol 4, pp 5–7

  2. Balasubramanian M, Schwartz EL, Tenenbaum JB, de Silva V, Langford JC (2002) The isomap algorithm and topological stability. Science 295(5552):7–7

    Article  Google Scholar 

  3. Bansal H, Shrivastava G, Nguyen GN, Stanciu LM (2018) Social network analytics for contemporary business organizations. IGI Global, Singapore

    Book  Google Scholar 

  4. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  5. Chang H, Yeung DY (2006) Robust locally linear embedding. Pattern Recogn 39(6):1053–1065

    Article  Google Scholar 

  6. Choi H, Choi S (2004) Kernel isomap. Electron Lett 40(25):1612–1613

    Article  Google Scholar 

  7. Choi H, Choi S (2005) Kernel isomap on noisy manifold. In: Proceedings. The 4th international conference on development and learning, 2005, IEEE, pp 208–213

  8. Choi H, Choi S (2007) Robust kernel isomap. Pattern Recogn 40(3):853–862

    Article  Google Scholar 

  9. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  10. Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  11. Fisher RA (1950) Contributions to mathematical statistics. American Psychological Association, Washington

    MATH  Google Scholar 

  12. Forina M (1991) Uci machine learning repository wine dataset. Institute of Pharmaceutical and Food Analysis and Technologies

  13. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  14. Han Y, Cheng Q, Hou Y (2018) Fault detection method based on improved isomap and svm in noise-containing nonlinear process. In: 2018 international conference on control. automation and information sciences (ICCAIS), IEEE, pp 461–466

  15. Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, IEEE, vol 1, pp 278–282

  16. Ho TK (1998) Nearest neighbors in random subspaces. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, Berlin, pp 640–648

  17. Hong C, Yu J, Zhang J, Jin X, Lee KH (2018) Multimodal face-pose estimation with multitask manifold deep learning. IEEE Trans Industr Inf 15(7):3952–3961

    Article  Google Scholar 

  18. Hougardy S (2010) The floyd-warshall algorithm on graphs with negative cycles. Inf Process Lett 110(8–9):279–281

    Article  MathSciNet  Google Scholar 

  19. Huang GB, Mattar M, Berg T, Learned-Miller E (2008) Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ’Real-Life’ Images: detection, alignment, and recognition. https://hal.inria.fr/inria-00321923

  20. Jain A, Mandowara J (2016) Text classification by combining text classifiers to improve the efficiency of classification. Int J Comput Appl (2250-1797) 6(2)

  21. Jiang S, Pang G, Wu M, Kuang L (2012) An improved k-nearest-neighbor algorithm for text categorization. Expert Syst Appl 39(1):1503–1509

    Article  Google Scholar 

  22. John GH, Langley P (2013) Estimating continuous distributions in bayesian classifiers. arXiv preprint arXiv:1302.4964

  23. Kouropteva O, Okun O, Pietikäinen M (2002) Selection of the optimal parameter value for the locally linear embedding algorithm. FSKD 2:359–363

    Google Scholar 

  24. Kouropteva O, Okun O, Pietikäinen M (2005) Incremental locally linear embedding. Pattern Recogn 38(10):1764–1767

    Article  Google Scholar 

  25. Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification algorithms: a survey. Information 10(4):150

    Article  Google Scholar 

  26. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  27. Lewis DD (1998) Naive (bayes) at forty: the independence assumption in information retrieval. In: European conference on machine learning, Springer, pp 4–15

  28. Li B, Huang DS, Wang C (2008) Improving the robustness of isomap by de-noising. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), IEEE, pp 266–270

  29. Lowe DG (1995) Similarity metric learning for a variable-kernel classifier. Neural Comput 7(1):72–85

    Article  Google Scholar 

  30. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16

    Google Scholar 

  31. McMahan B, Ramage D (2017) Federated learning: collaborative machine learning without centralized training data. Google Research Blog 3

  32. Metsis V, Androutsopoulos I, Paliouras G (2006) Spam filtering with naive bayes-which naive bayes? CEAS, Mountain View, CA 17:28–69

    Google Scholar 

  33. Miranda AL, Garcia LPF, Carvalho AC, Lorena AC (2009) Use of classification algorithms in noise detection and elimination. In: International conference on hybrid artificial intelligence systems, Springer, pp 417–424

  34. Mitchell T (1997) Machine learning. Mcgraw-hill higher education, New York

    MATH  Google Scholar 

  35. Nikam SS (2015) A comparative study of classification techniques in data mining algorithms. Oriental J Comput Sci Technol 8(1):13–19

    Google Scholar 

  36. Nikhath AK, Subrahmanyam K, Vasavi R (2016) Building a k-nearest neighbor classifier for text categorization. Int J Comput Sci Inf Technol 7(1):254–256

    Google Scholar 

  37. Qu T, Cai Z (2015) A fast isomap algorithm based on fibonacci heap. In: international conference in swarm intelligence, Springer, pp 225–231

  38. Qu T, Cai Z (2017) An improved isomap method for manifold learning. Int J Intell Comput Cybernet

  39. Rana S, Singh A (2016) Comparative analysis of sentiment orientation using svm and naive bayes techniques. In: 2016 2nd international conference on next generation computing technologies (NGCT), IEEE, pp 106–111

  40. Saputra MFA, Widiyaningtyas T, Wibawa AP (2018) Illiteracy classification using k means-naïve bayes algorithm. JOIV Int J Inform Vis 2(3):153–158

    Google Scholar 

  41. Saxena A, Gupta A, Mukerjee A (2004) Non-linear dimensionality reduction by locally linear isomaps. In: International conference on neural information processing, Springer, pp 1038–1043

  42. Shao C, Huang H (2005) Selection of the optimal parameter value for the isomap algorithm. In: Mexican international conference on artificial intelligence, Springer, pp 396–404

  43. Sumithra V, Surendran S (2015) A review of various linear and non linear dimensionality reduction techniques. Int J Comput Sci Inf Technol 6:2354–2360

    Google Scholar 

  44. Tay B, Hyun JK, Oh S (2014) A machine learning approach for specification of spinal cord injuries using fractional anisotropy values obtained from diffusion tensor images. Comput Math Methods Medicine 2014

  45. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  46. Thongkam J, Xu G, Zhang Y (2008) Adaboost algorithm with random forests for predicting breast cancer survivability. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), IEEE, pp 3062–3069

  47. Tzacheva A, Ranganathan J, Mylavarapu SY (2019) Actionable pattern discovery for tweet emotions. In: International conference on applied human factors and ergonomics, Springer, pp 46–57

  48. Ullah S, Jeong M, Lee W (2018) Nondestructive inspection of reinforced concrete utility poles with isomap and random forest. Sensors 18(10):3463

    Article  Google Scholar 

  49. Vapnik V, Vapnik V (1998) Statistical learning theory 1:624

    Google Scholar 

  50. Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin

    Book  Google Scholar 

  51. Verma R, Khurd P, Davatzikos C (2007) On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 26(6):772–778

    Article  Google Scholar 

  52. Wang J (2012) Geometric structure of high-dimensional data and dimensionality reduction. Springer, Berlin

    MATH  Google Scholar 

  53. Xu S (2018) Bayesian naïve bayes classifiers to text classification. J Inf Sci 44(1):48–59

    Article  Google Scholar 

  54. Ye DH, Desjardins B, Hamm J, Litt H, Pohl KM (2014) Regional manifold learning for disease classification. IEEE Trans Med Imaging 33(6):1236–1247

    Article  Google Scholar 

  55. Yin J, Hu D, Zhou Z (2008) Noisy manifold learning using neighborhood smoothing embedding. Pattern Recogn Lett 29(11):1613–1620

    Article  Google Scholar 

  56. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  Google Scholar 

  57. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  Google Scholar 

  58. Zhang B (2011) Multiple features facial image retrieval by spectral regression and fuzzy aggregation approach. Int J Intell Comput Cybernet

  59. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (A Class) NO. XDA19020102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jing.

Ethics declarations

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, M., Khan, M.S.S., Rehman, T.U. et al. NRIC: A Noise Removal Approach for Nonlinear Isomap Method. Neural Process Lett 53, 2277–2304 (2021). https://doi.org/10.1007/s11063-021-10472-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10472-3

Keywords

Navigation