Skip to main content
Log in

Finite-Time Synchronization for a Coupled Fuzzy Neutral-Type Rayleigh System

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we focus on the finite-time synchronization for a coupled fuzzy neutral-type Rayleigh system. Based on finite-time stability theory and inequality techniques, some new sufficient conditions on the finite-time synchronization between the drive system and the response system are established. Finally, two numerical examples verify the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li X, Ma Q (2006) Boundedness of solutions for second order differential equations with asymmetric nonlinearity. J Math Anal 314:233–253

    Article  MathSciNet  MATH  Google Scholar 

  2. Radhakrishnan S (1994) Exact solutions of Rayleigh’s equation and sufficient conditions for inviscid instability of parallel, bounded shear flows. Z Angew Math Phys 45:615–637

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu B (2009) Anti-periodic solutions for forced Rayleigh-type equations. Nonlinear Anal Real World Appl 10:2850–2856

    Article  MathSciNet  MATH  Google Scholar 

  4. Lu S, Jia X (2020) Existence and uniqueness of homoclinic solution for a rayleigh equation with a singularity. Qual Theor Dyn Syst 19:17

    Article  MathSciNet  MATH  Google Scholar 

  5. Nordam T, Letnes P, Simonsen I (2013) Numerical simulations of scattering of light from two-dimensional surfaces using the reduced Rayleigh equation. Front Phys 8:47–53

    Google Scholar 

  6. Cveticanin L, Abd El-Latif GM, El-Naggar AM, Ismail GM (2008) Periodic solution of the generalized Rayleigh equation. J Sound Vib 318:580–591

    Article  Google Scholar 

  7. Cheung W, Ren J (2006) Periodic solutions for p-Laplacian Rayleigh equations. Nonlinear Anal 65:2003–2012

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma T (2012) Periodic solutions of Rayleigh equations via time-maps. Nonlinear Anal 75:4137–4144

    Article  MathSciNet  MATH  Google Scholar 

  9. Habets P, Torres PJ (2001) Some multiplicity results for periodic solutions of a Rayleigh differential equation. Dyn Contin Discrete Impuls Syst Ser A Math Anal 8:335–351

    MathSciNet  MATH  Google Scholar 

  10. Russell S (1977) Period bounds for generalized Rayleigh equation. Internat J Nonlinear Mech 6:271–277

    MathSciNet  MATH  Google Scholar 

  11. Arik S (2019) A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays. J Franklin Inst 356:276–291

    Article  MathSciNet  MATH  Google Scholar 

  12. Faydasicok O (2020) A new Lyapunov functional for stability analysis of neutral-type Hop- field neural networks with multiple delays. Neural Netw 129:288–297

    Article  Google Scholar 

  13. Arik S (2020) New criteria for stability of neutral-type neural networks with multiple time delays. IEEE Trans Neural Netw Learn Syst 31:1504–1513

    Article  MathSciNet  Google Scholar 

  14. Faydasicok O (2020) An improved Lyapunov functional with application to stability of Cohen-Grossberg neural networks of neutral-type with multiple delays. Neural Netw 13:532–539

    Article  MATH  Google Scholar 

  15. Li W, Liu S, Xu D (2016) The existence of periodic solutions for coupled pantograph Rayleigh system. Math Methods Appl Sci 39:1667–1679

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo Y, Liu S, Ding XH (2016) The existence of periodic solutions for coupled Rayleigh. Neurocomputing 191:398–408

    Article  Google Scholar 

  17. Hu J, Zeng CN, Tan J (2017) Boundedness and periodicity for linear threshold discrete-time quaternion-valued neural networks. Neurocomputing 267:417–425

    Article  Google Scholar 

  18. Obradovic M (2019) Implicit numerical methods for neutral stochastic differential equations with unbounded delay and Markovian switching. Appl Math Comput 347:664–687

    MathSciNet  MATH  Google Scholar 

  19. Xu J, Zhang Z, Caraballo T (2019) Well-posedness and dynamics of impulsive fractional stochastic evolution equations with unbounded delay. Commun Nonlinear Sci Numer Simul 75:121–139

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang H, Zeng Z, Han Q (2019) Synchronization of multiple reaction-diffusion neural networks with heterogeneous and unbounded time-varying delays. IEEE Trans Cybern 49:2980–2991

    Article  Google Scholar 

  21. Yang T, Yang L, Wu C, Chua L(1996) Fuzzy cellular neural networks: theory. In: Proceedings of IEEE international workshop on cellular neural networks and applications. 181–186

  22. Yun S, Man Y, Na G (2020) Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks. Nuclear Eng Technol 52:2678–2685

    Article  Google Scholar 

  23. Zhou H, Zhao H, Zhang Y (2020) Nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications. Appl Intell 50:1657–1672

    Article  Google Scholar 

  24. Ge C, Shi Y, Park J, Hua C (2020) State estimate for fuzzy neural networks with random uncertainties based on sampled-data control. J Franklin Inst 357:635–650

    Article  MathSciNet  MATH  Google Scholar 

  25. He D, Xu D (2008) Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays. Phys Lett A 372:7057–7062

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang J, He S, Huang L (2020) Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type. Int J Bifurc Chaos 20:2050160

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang L, Ma H, Wang J, Huang C (2010) Global dynamics of a Filippov plant disease model with an economic threshold of infected-susceptible ratio. J Appl Anal Comput 10:2263–2277

    MathSciNet  MATH  Google Scholar 

  28. Xiang L et al (2020) Novel linguistic steganography based on character-level text generation. Mathematics 8:1558

    Article  Google Scholar 

  29. Manickam I et al (2020) Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen-Grossberg neural networks with Markovian jump parameters: A graphtheoretic approach. Nonlinear Anal Modell Control 25:726–44

    MATH  Google Scholar 

  30. Yan L et al (2020) Construction of regional Logistics weighted network model and its robust optimization: evidence from China. Complexity 2020:2109423

    Google Scholar 

  31. Yu F et al (2020) A new 4D four-wing memristive hyperchaotic system: dynamical analysis, electronic circuit design, shape synchronization and secure communication. Int J Bifurc Chaos 30:2050147

    Article  MathSciNet  MATH  Google Scholar 

  32. Cao Q, Long X (2020) New convergence on inertial neural networks with time-varying delays and continuously distributed delays. AIMS Math 5:5955–5968

    Article  MathSciNet  Google Scholar 

  33. Guo Z, Gong S, Huang T (2018) Finite-time synchronization of inertial memristive neural networks with time delay via delay-dependent control. Neurocomputing 293:100–107

    Article  Google Scholar 

  34. Saravanakumar R, Stojanovic S, Radosavljevic D, Ahn C, Karimi H (2019) Finite-time passivity-based stability criteria for delayed discrete-time neural networks via new weighted summation inequalities. IEEE Trans Neural Netw Learn Syst 30(1):58–71

    Article  MathSciNet  Google Scholar 

  35. Zhang Y, Zheng S (2019) Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay. Chaos Solit Fract 128:176–190

    Article  MathSciNet  Google Scholar 

  36. Hale J (1971) Functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  37. Gui Z, Ge W, Yang X (2007) Periodic oscillation for a Hopfield neural networks with neutral delays. Phys Lett A 364:267–273

    Article  MATH  Google Scholar 

  38. Lu S, Ren J, Ge W (2003) Problems of periodic solutions for a kind of second order neutral functional differential equation. Appl Anal 82:411–426

    Article  MathSciNet  MATH  Google Scholar 

  39. Ding W, Han M (2008) Synchronization of delayed fuzzy cellular neural networks based on adaptive control. Phys Lett A 372:4674–4681

    Article  MATH  Google Scholar 

  40. Abdurahman A, Jiang H, Teng Z (2016) Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst 297:96–111

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang D, Jiang M, Jian J (2017) Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control. Neurocomputing 266:527–539

    Article  Google Scholar 

  42. Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34:51–56

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Famei Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F. Finite-Time Synchronization for a Coupled Fuzzy Neutral-Type Rayleigh System . Neural Process Lett 53, 2967–2984 (2021). https://doi.org/10.1007/s11063-021-10532-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10532-8

Keywords

Navigation