Skip to main content
Log in

Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a novel FitzHugh-Nagumo (FHN) neuron model with membrane potential threshold control policy is proposed. As the membrane potential threshold control policy is a switching control policy, our proposed model is a Filippov system, which is different from the existing FHN model. For this model, first, the sliding segments and sliding regions are investigated. Then, based on the obtained sliding regions, we discuss the null-clines and the existence conditions of various equilibria such as regular equilibrium, virtual equilibrium and boundary equilibrium. By choosing the membrane potential threshold as the bifurcation parameter, the boundary node bifurcation, pseudo-saddle-node bifurcation and the global touching bifurcation are investigated by using numerical techniques. Furthermore, the effectiveness and correctness of the proposed FHN model with membrane potential threshold control policy are verified by circuit simulation. Numerical examples show that the membrane potential threshold guided switching may cause complex dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Zheng Q, Zhao P, Li Y, et al. (2020) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Computing and Applications, 1–23

  2. Egrioglu E, Yolcu U, Aladag CH et al (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258

    Article  Google Scholar 

  3. Zheng Q, Yang M, Yang J et al (2018) Improvement of generalization ability of deep CNN via implicit regularization in two-stage training process. IEEE Access 6:15844–15869

    Article  Google Scholar 

  4. Hu W, Qiao X, Dong T (2021) Spatiotemporal dynamic of a coupled neutral-type neural network with time delay and diffusion. Neural Comput Appl 33(12):6415–6426

  5. Zheng Q, Tian X, Jiang N et al (2019) Layer-wise learning based stochastic gradient descent method for the optimization of deep convolutional neural network. J Intell Fuzzy Syst 37(4):5641–5654

    Article  Google Scholar 

  6. Sarkar A (2021) Deep Learning Guided Double Hidden Layer Neural Synchronization Through Mutual Learning. Neural Process Lett 53(2):1355–1384

    Article  Google Scholar 

  7. Zheng Q, Tian X, Yang M, et al. (2019) PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimensional Systems and Signal Processing, 1–35

  8. Zheng Q, Yang M, Tian X, et al. (2020) A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dynamics in Nature and Society, 2020

  9. Dong T, Zhu H (2021) Anti-control of periodic firing in HR model in the aspects of position, amplitude and frequency. Cognitive Neurodynamics 15:533–545

  10. Dong T, Bai J, Yang L (2019) Bifurcation analysis of delayed complex-valued neural network with diffusions. Neural Process Lett 50(2):1019–1033

    Article  Google Scholar 

  11. Dong T, Huang T (2020) Neural cryptography based on complex-valued neural network. IEEE Trans Neural Netw Learn Syst 31(11):4999–5004

    Article  MathSciNet  Google Scholar 

  12. Dong T, Zhang Q (2020) Stability and oscillation analysis of a gene regulatory network with multiple time delays and diffusion rate. IEEE Trans Nanobiosci 19(2):285–298

    Article  Google Scholar 

  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physio 117(4):500–544

    Article  Google Scholar 

  14. FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. Biological Engineering, 1–85

  15. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  Google Scholar 

  16. Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102

    Article  Google Scholar 

  17. Lu L, Ge M, Xu Y et al (2019) Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh-Nagumo model. Phys A 535:122419

    Article  MathSciNet  Google Scholar 

  18. Zhang J, Liao X (2017) Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. Aeu-Int J Electr Commun 75:82–90

    Article  Google Scholar 

  19. Plotnikov SA, Fradkov AL (2019) On synchronization in heterogeneous FitzHugh-Nagumo networks. Chaos, Soliton Fractal 121:85–91

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen S, Lim CC, Shi P et al (2018) Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data. Automatica 93:352–362

    Article  MathSciNet  MATH  Google Scholar 

  21. Vaidyanathan S (2016) Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. Int J PharmTech Res 9(4):413–425

    Google Scholar 

  22. Shim Y, Husbands P (2018) The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons. Adapt Behav 26(4):165–176

    Article  Google Scholar 

  23. Korotkov AG, Kazakov AO, Levanova TA et al (2018) Chaotic regimes in the ensemble of FitzhHugh-Nagumo elements with weak couplings. IFAC-PapersOnLine 51(33):241–245

    Article  Google Scholar 

  24. Kuznetsov SP, Sedova YV (2018) Hyperbolic Chaos in Systems Based on FitzHugh-Nagumo Model Neurons. Regular Chaotic Dyn 23(4):458–470

    Article  MathSciNet  MATH  Google Scholar 

  25. Jalnine AY (2015) Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh-Nagumo systems. Commun Nonlinear Sci Numer Simul 23(1–3):202–208

    Article  MathSciNet  MATH  Google Scholar 

  26. Duarte J, Silva L, Ramos JS (2006) Types of bifurcations of Fitzhugh-Nagumo maps. Nonlinear Dyn 44(1):231–242

    Article  MathSciNet  MATH  Google Scholar 

  27. Gaiko VA (2011) Multiple limit cycle bifurcations of the FitzHugh-Nagumo neuronal model. Nonlinear Anal: Theory, Method Appl 74(18):7532–7542

    Article  MathSciNet  MATH  Google Scholar 

  28. Shepelev IA, Shamshin DV, Strelkova GI et al (2017) Bifurcations of spatiotemporal structures in a medium of FitzHugh-Nagumo neurons with diffusive coupling. Chaos, Soliton Fractal 104:153–160

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen M, Qi J, Xu Q et al (2019) Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU-Int J Electr Commun 110:152840

    Article  Google Scholar 

  30. Din Q, Khaliq S, Rawalakot P (2018) Flip and Hopf bifurcations of discrete-time Fitzhugh-Nagumo model. Open J Math Sci 2(1):209–220

    Article  Google Scholar 

  31. Brandibur O, Kaslik E (2018) Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal mode. Math Method Appl Sci 41(17):7182–7194

    Article  MATH  Google Scholar 

  32. Tabi CB (2018) Dynamical analysis of the FitzHugh-Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. Int J Non-Linear Mech 105:173–178

    Article  Google Scholar 

  33. Alidousti J, Ghaziani RK (2017) Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model. Math Model Comput Simul 9(3):390–403

    Article  MathSciNet  Google Scholar 

  34. Chen CN, Ei SI, Tzeng S (2018) Heterogeneity-induced effects for pulse dynamics in Fitzhugh-Nagumo-type systems. Physica D 382:22–32

    MathSciNet  MATH  Google Scholar 

  35. Zahedi A, Haghiri S, Hayati M (2019) Multiplierless digital implementation of time-varying FitzHugh-Nagumo model. IEEE Trans Circuits Syst I Regul Pap 66(7):2662–2670

    Article  MathSciNet  MATH  Google Scholar 

  36. Selverston AI, Miller JP, Wadepuhl M (1983) Neural mechanisms for the production of cyclic motor patterns. IEEE Trans Syst, Man, Cyber 5:749–757

    Article  Google Scholar 

  37. Li F, Basu A, Chang CH et al (2012) Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE Trans Circuits Syst I Regul Pap 59(12):3046–3059

    Article  MathSciNet  MATH  Google Scholar 

  38. Holden AV, Winlow W (1983) Neuronal activity as the behavior of a differential system. IEEE Trans Syst, Man, Cyber 5:711–719

    Article  MATH  Google Scholar 

  39. Yu Z, Guo S, Deng F et al (2018) Emergent inference of hidden markov models in spiking neural networks through winner-take-all. IEEE Trans Cyber 50(3):1347–1354

    Article  Google Scholar 

  40. Farquhar E, Hasler P (2005) A bio-physically inspired silicon neuron. IEEE Trans Circuits Syst I Regul Pap 52(3):477–488

    Article  Google Scholar 

  41. Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19(19):8589–8596

    Article  Google Scholar 

  42. Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 77(4):1697–1715

    Article  Google Scholar 

  43. He Z, Li C, Chen L et al (2020) Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects. Neural Netw 121:497–511

    Article  MATH  Google Scholar 

  44. Filippov AF (2013) Differential equations with discontinuous righthand sides: control systems. Springer Science & Business Media, Berlin

    Google Scholar 

  45. Kuznetsov YA, Rinaldi S, Gragnani A (2003) One-parameter bifurcations in planar Filippov systems. Int J Bifurcation chaos 13(08):2157–2188

    Article  MathSciNet  MATH  Google Scholar 

  46. Utkin VI (2013) Sliding modes in control and optimization. Springer Science & Business Media, Berlin

    Google Scholar 

  47. Yang Y, Liao X (2018) Filippov hindmarsh-rose neuronal model with threshold policy control. IEEE Trans Neural Netw Learn Syst 30(1):306–311

    Article  Google Scholar 

  48. Zhang X, Tang S (2014) Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl Math Comput 239:265–284

    MathSciNet  MATH  Google Scholar 

  49. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57(3):683–684

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Project of China under Grant 2018AAA0100101, in part by Fundamental Research Funds for the Central Universities under Grant XDJK2020B009, in part by Chongqing Basic and Frontier Research Project under Grant cstc2019jcyj-msxmX0470, and cstc2020jcyj-msxmX0139, in part by the Chongqing Technological Innovation and Application Project under Grant cstc2018jszx-cyzdX0171, in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201900816, in part by Chongqing Social Science Planning Project under Grant 2019BS053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Zhu, H. Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy. Neural Process Lett 53, 3801–3824 (2021). https://doi.org/10.1007/s11063-021-10549-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10549-z

Keywords

Navigation