Skip to main content
Log in

Two-Objective Filtering for Takagi–Sugeno Fuzzy Hopfield Neural Networks with Time-Variant Delay

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper focuses on the issue of two-objec-tive filtering for Takagi–Sugeno fuzzy Hopfield neural networks with time-variant delay. The intention is to design a fuzzy filter subject to random occurring gain perturbations to make sure that the filtering-error system achieves a pre-defined \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) disturbance attenuation level in mean square simultaneously. Without imposing any additional constraints on the differentiability of the time-delay function, a criterion of the mean-square \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}\mathscr {-L} _{\infty }\) performance analysis for the filtering-error system is derived by means of an augmented Lyapunov functional and the second-order Bessel–Legendre inequality. Then, a numerically tractable design scheme is developed for the desired non-fragile \({\mathscr {H}}_{\infty }\) and \( {\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) filter, where the gains are able to be determined by the solution of some linear matrix inequalities. At last, a numerical example with simulations is provided to illustrate the applicability and superiority of the present \({\mathscr {H}}_{\infty }\) and \( {\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) filtering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suganthan PN, Teoh EK, Mital DP (1995) Pattern recognition by homomorphic graph matching using Hopfield neural networks. Image Vis Comput 13(1):45–60

    Article  Google Scholar 

  2. Cheng L, Hou Z, Tan M (2006) Relaxation labeling using an improved Hopfield neural network. In: Huang DS, Li K, Irwin GW (eds) Intelligent computing in signal processing and pattern recognition, vol 345. Springer, Berlin, pp 430–439

    Chapter  Google Scholar 

  3. Liu Q, Ye X, Zhang Y (2006) A Hopfield neural network based algorithm for RNA secondary structure prediction. In: First international multi-symposiums on computer and computational sciences (IMSCCS’06). IEEE, vol 1, pp 10–16

  4. Wang X, Li Z (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118

    Article  Google Scholar 

  5. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  6. Lilly JH (2011) Fuzzy control and identification. Wiley, New York

    MATH  Google Scholar 

  7. Xia J, Zhang J, Sun W, Zhang B, Wang Z (2019) Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst 49(7):1541–1548

    Article  Google Scholar 

  8. Nithya V, Sakthivel R, Alzahrani F (2020) Dissipative-based non-fragile filtering for fuzzy networked control systems with switching communication channels. Appl Math Comput 373:125011

    MathSciNet  MATH  Google Scholar 

  9. Huang H, Ho DWC, Lam J (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans Circuits Syst II Express Briefs 52(5):251–255

    Article  Google Scholar 

  10. Sakthivel R, Mathiyalagan K, Anthoni SM (2011) Design of a passification controller for uncertain fuzzy Hopfield neural networks with time-varying delays. Phys Scr 84(4):045024

    Article  MATH  Google Scholar 

  11. Ahn CK (2011) Takagi–Sugeno fuzzy Hopfield neural networks for \({\mathscr {H}}_{\infty }\) nonlinear system identification. Neural Process Lett 34(1):59–70

    Article  Google Scholar 

  12. Wang Z, Liu Y, Liu X (2009) State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw 22(1):41–48

    Article  MathSciNet  MATH  Google Scholar 

  13. Han J, Zhang Z, Zhang X, Zhou J (2020) Design of passive filters for time-delay neural networks with quantized output. Chin Phys B 29(11):110201

    Article  Google Scholar 

  14. Ahn CK (2010) Delay-dependent state estimation for ts fuzzy delayed Hopfield neural networks. Nonlinear Dyn 61(3):483–489

    Article  MathSciNet  MATH  Google Scholar 

  15. Balasubramaniam P, Vembarasan V, Rakkiyappan R (2012) Delay-dependent robust asymptotic state estimation of Takagi–Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays. Expert Syst Appl 39(1):472–481

    Article  Google Scholar 

  16. Shi P, Zhang Y, Chadli M, Agarwal RK (2015) Mixed \({\mathscr {H}}_{\infty }\) and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909

    Article  MathSciNet  Google Scholar 

  17. Arslan E, Vadivel R, Ali MS, Arik S (2017) Event-triggered \({\mathscr {H}}_{\infty }\) filtering for delayed neural networks via sampled-data. Neural Netw 91:11–21

    Article  MATH  Google Scholar 

  18. Zheng D, Hua M, Chen J, Bian C, Dai W (2019) Robust partially mode-dependent \({\mathscr {H}}_{\infty }\) filtering for discrete-time nonhomogeneous Markovian jump neural networks with additive gain perturbations. Math Methods Appl Sci 42(3):982–998

    Article  MathSciNet  MATH  Google Scholar 

  19. Li F, Zhao J, Song S, Huang X, Shen H (2020) \({\mathscr {H}}_{\infty }\) filtering for Markov jump neural networks subject to hidden-Markov mode observation and packet dropouts via an improved activation function dividing method. Neural Process Lett 51:1939–1955

    Article  Google Scholar 

  20. Choi HD, Ahn CK, Shi P, Lim MT, Song MK (2015) \({\mathscr {L}} _{2}\mathscr {-L}_{\infty }\) filtering for Takagi–Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153:117–125

    Article  Google Scholar 

  21. Lee TH, Park JH (2018) New methods of fuzzy sampled-data control for stabilization of chaotic systems. IEEE Trans Syst Man Cybern Syst 48(12):2026–2034

  22. Tai W, Zuo D, Xuan Z, Zhou J, Wang Z (2021) Non-fragile \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) filtering for a class of switched neural networks. Math Comput Simul 185:629–645

    Article  Google Scholar 

  23. Liu Y, Xia J, Song X, Shen H (2020) Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme. J Frankl Inst 357(15):10900–10920

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan Z, Liu Y, Huang X, Zhou J, Shen H (2019) Mixed \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) anti-synchronization control for chaotic delayed recurrent neural networks. Int J Control Autom Syst 17(12):3158–3169

    Article  Google Scholar 

  25. You X, Song Q, Zhao Z (2020) Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw 123:248–260

    Article  MATH  Google Scholar 

  26. Zhou J, Liu Y, Park JH, Kong Q, Wang Z (2021) Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete Contin Dyn Syst-S 14(4):1569–1589

    MathSciNet  Google Scholar 

  27. Arik S (2020) New criteria for stability of neutral-type neural networks with multiple time delays. IEEE Trans Neural Netw Learn Syst 31(5):1504–1513

    Article  MathSciNet  Google Scholar 

  28. Wang Y, Hu X, Shi K, Song X, Shen H (2020) Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals. J Frankl Inst 357(15):10921–10936

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou Y, Liu Y, Zhou J, Wang Z (2021) Quantized passive filtering for switched delayed neural networks. Nonlinear Anal Model Control 26(1):93–112

    Article  MathSciNet  MATH  Google Scholar 

  30. Ru T, Xia J, Huang X, Chen X, Wang J (2020) Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters. J Frankl Inst 357(11):6882–6898

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang X, Yang G (2013) Nonfragile \({\mathscr {H}}_{\infty }\) filter design for T–S fuzzy systems in standard form. IEEE Trans Ind Electron 61(7):3448–3458

    Article  Google Scholar 

  32. Xia J, Gao H, Liu M, Zhuang G, Zhang B (2018) Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems. J Frankl Inst 355(6):3031–3049

    Article  MathSciNet  MATH  Google Scholar 

  33. Tai W, Teng Q, Zhou Y, Zhou J, Wang Z (2019) Chaos synchronization of stochastic reaction–diffusion time-delay neural networks via non-fragile output-feedback control. Appl Math Comput 354:115–127

    MathSciNet  MATH  Google Scholar 

  34. Bao H, Park JH, Cao J (2019) Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw 119:190–199

    Article  MATH  Google Scholar 

  35. Lin Y, Zhuang G, Sun W, Zhao J, Chu Y (2021) Resilient \({\mathscr {H}}_{\infty }\) dynamic output feedback controller design for USJSs with time-varying delays. Appl Math Comput 395:125875

    MathSciNet  MATH  Google Scholar 

  36. Zhang S, Wang Z, Dong DH, Alsaadi FE, Hayat T (2015) Nonfragile \({\mathscr {H}}_{\infty }\) fuzzy filtering with randomly occurring gain variations and channel fadings. IEEE Trans Fuzzy Syst 24(3):505–518

    Article  Google Scholar 

  37. Mathiyalagan K, Su H, Shi P, Sakthivel R (2015) Exponential \({\mathscr {H}}_{\infty }\) filtering for discrete-time switched neural networks with random delays. IEEE Trans Cybern 45(4):676–687

    Article  Google Scholar 

  38. Y Liu, Z Xuan, Z Wang, J Zhou, Y Liu (2020) Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations. Applied Mathematics Computation 385:125429

  39. Seuret A, Gouaisbaut F (2015) Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst Control Lett 81:1–7

    Article  MathSciNet  MATH  Google Scholar 

  40. Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238

    Article  MathSciNet  MATH  Google Scholar 

  41. Xie L, Fu M, de Souza CE (1992) \(\mathscr {H}_{\infty }\) control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans Automat Contr 37(8):1253–1256

  42. Park JH, Lee TH, Liu Y, Chen J (2019) Dynamic systems with time delays: stability and control. Springer, Berlin

    Book  MATH  Google Scholar 

  43. Yan Z, Huang X, Fan Y, Xia J, Shen H (2020). Threshold-function-dependent quasi-synchronization of delayed memristive neural networks via hybrid event-triggered control. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2020.2964605

  44. Zhou J, Liu Y, Xia J, Wang Z, Arik S (2020) Resilient fault-tolerant anti-synchronization for stochastic delayed reaction–diffusion neural networks with semi-Markov jump parameters. Neural Netw 125:194–204

    Article  MATH  Google Scholar 

  45. Ali M, Usha M, Alsaedi A, Ahmad B (2020) Synchronization of stochastic complex dynamical networks with mixed time-varying coupling delays. Neural Process Lett 52:1233–1250

    Article  Google Scholar 

  46. Yang X, Li X, Lu J, Cheng Z (2020) Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern 50:4043–4052

    Article  Google Scholar 

  47. Yan Z, Huang X, Cao J (2020) Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control. Sci China Inf Sci 63:212201

    Article  MathSciNet  Google Scholar 

  48. Liu K, Seuret A, Xia Y (2017) Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality. Automatica 76:138–142

    Article  MathSciNet  MATH  Google Scholar 

  49. Gu K, Chen J, Kharitonov VL (2003) Stability of time-delay systems. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Nos. (61806004 and 61503002), the Open Project of AnHui Province Key Laboratory of Special and Heavy Load Robot under Grant TZJQR005-2020, and the Excellent Youth Talent Support Program of Universities in Anhui Province (GXYQZD2019021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Authors’ contributions

All authors read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Chen, L., Zhou, J. et al. Two-Objective Filtering for Takagi–Sugeno Fuzzy Hopfield Neural Networks with Time-Variant Delay. Neural Process Lett 53, 4047–4071 (2021). https://doi.org/10.1007/s11063-021-10580-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10580-0

Keywords

Navigation