Skip to main content
Log in

Distributed Neural Network and Particle Swarm Optimization for Micro-grid Adaptive Power Allocation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The hybrid algorithm strategy proposed in this paper aims to combine the optimal power flow with voltage-var optimization to meet the load demand, reduce the transmission line losses and maintain the voltage within a practicable range. A distributed neural network algorithm is used to seek an optimal solution of active power flow which minimizes the cost of active power. In order to ensure that the optimal power flow will not cause a serious impact to the stability of the power grid, voltage-var optimization engines which employ a multi-algorithm coordination are presented to optimize the losses of power grid and the bus voltage. The simulation of IEEE 30-bus shows that the proposed hybrid algorithm strategy can not only minimize the cost of active power generation, but also satisfy the load demand under the precondition that all the bus voltage is within the reference range. The percentages of power losses comparisons verify that the proposed hybrid algorithm strategy can decrease the transmission line losses of the power grid effectively, which will not bring a serious influence to the stability of the power grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\alpha ,\beta \) :

Fuzzy coefficients of object function

\(\bigtriangledown \) :

Gradient calculation

\(\Delta q_{ci,t}\) :

Unit compensation of capacitor bank i

\(\Delta V_{tri,t}\) :

The maximum voltage changes of transformer i

\(\mathrm {S}_{LOSS}\) :

Whole day transmission losses of apparent power

\(\mathrm {S}_{LOSS}^{max}\) :

Expected maximum whole day transmission losses of apparent power

\(\mathrm {S}_{LOSS}^{min}\) :

Expected minimum whole day transmission losses of apparent power

\(\rho _{tri,t}\) :

Transformer ratio of bus i at time t

\(\xi _{ci,t}\) :

Switched capacitors number of capacitor bank i

\(\xi _{ci,t}\) :

Switched numbers of capacitances

\(a_i,b_i,c_i\) :

Active power cost coefficients of generator i

\(C_{loss}\) :

The cost coefficient of transmission line losses

\(C_{v}\) :

The cost coefficient of voltage deviation

L :

Laplacian matrix

NDB :

Total number of buses, loads, capacitor banks

nMT :

Total number of generators, transmission lines, time slots

\(P_{G_{i,t}}^{max}\) :

Maximum output limits of generator i

\(P_{G_{i,t}}^{min}\) :

Minimum output limits of generator i

\(P_{Gi,t}\) :

Active power generation by generator i at time t

\(P_{Gi,t}^{down}\) :

Lower ramp-rate limits of generator i

\(P_{Gi,t}^{up}\) :

Upper ramp-rate limits of generator i

\(P_{i,t}\) :

Active power of bus i

\(P_{loadi,t}\) :

Active power demand of bus i

\(P_{lossl,t}\) :

Active power loss of transmission line l

\(Q_{Ci,t}\) :

Reactive power compensation of bus i

\(Q_{Gi,t}\) :

Reactive power output of generator i

\(Q_{Gi,t}^{max}\) :

Maximum reactive power output limits of generator i

\(Q_{Gi,t}^{min}\) :

Minimum reactive power output limits of generator i

\(Q_{i,t}\) :

Reactive power of bus i

\(Q_{loadi,t}\) :

Reactive power demand of bus i

\(S_{lossl,t}\) :

Apparent power loss in line l

\(tap_{tri,t}\) :

Tap setting of transformer i

\(tap_{tri,t}^{max}\) :

Maximum tap setting of transformer i

\(tap_{tri,t}^{min}\) :

Minimum tap setting of transformer i

\(V_{base}\) :

Nominal voltage

\(V_{Gi,t}\) :

Voltage of generator bus i

\(V_{i,t}\) :

Voltage of bus i

\(V_{loadi,t}\) :

Voltage of load node i

References

  1. Yao Y, He X, Huang T et al (2018) A projection neural network for optimal demand response in smart grid environment. Neural Comput Appl 29(6):259–267

    Article  Google Scholar 

  2. Tang H, Sun W, Yu H et al (2019) A novel hybrid algorithm based on PSO and FOA for target searching in unknown environments. Appl Intel 49(7):2603–2622

    Article  Google Scholar 

  3. Liu Y, Ge B, Abu-Rub H et al (2014) An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system. IEEE Trans Ind Inform 10(1):399–407

    Article  Google Scholar 

  4. Deng T, He X, Zeng Z (2018) Recurrent neural network for combined economic and emission dispatch. Appl Intel 48(8):2180–2198

    Article  Google Scholar 

  5. Lu X, Yu X, Lai J et al (2017) Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links. IEEE Trans Ind Inform 13(2):448–460

    Article  Google Scholar 

  6. Li S, Zhou M, Yu X (2013) Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inform 9(4):1879–1891

    Article  Google Scholar 

  7. Kyriakarakos G, Dounis AI, Arvanitis KG et al (2017) Design of a fuzzy cognitive maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey. Appl Energy 187:575–584

    Article  Google Scholar 

  8. Liu ZW, Yu X, Guan ZH et al (2017) Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans Syst Man Cybern Syst 47(5):783–793

    Article  Google Scholar 

  9. Liu Z, Guan Z, Shen X et al (2012) Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Trans Autom Control 57(10):2639–2643

    Article  MathSciNet  Google Scholar 

  10. Yu W, Zhou L, Yu X et al (2013) Consensus in multi-agent systems with second-order dynamics and sampled data. IEEE Trans Ind Inform 9(4):2137–2146

    Article  Google Scholar 

  11. Miao G, Ma Q, Liu Q (2016) Consensus problems for multi-agent systems with nonlinear algorithms. Neural Comput Appl 27(5):1327–1336

    Article  Google Scholar 

  12. Manbachi M, Farhangi H, Palizban A et al (2016) Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm optimization and fuzzification. Appl Energy 174:69–79

    Article  Google Scholar 

  13. Wu Y, Liu G, Guo X et al (2017) A self-adaptive chaos and Kalman filter-based particle swarm optimization for economic dispatch problem. Soft Comput 21(12):3353–3365

    Article  Google Scholar 

  14. Guo F, Wen C, Mao J et al (2016) Distributed economic dispatch for smart grids with random wind power. IEEE Trans Smart Grid 7(3):1572–1583

    Article  Google Scholar 

  15. Pothitou M, Hanna RF, Chalvatzis KJ (2016) Environmental knowledge, pro-environmental behaviour and energy savings in households: an empirical study. Appl Energy 184:1217–1229

    Article  Google Scholar 

  16. Azizipanah-Abarghooee R, Terzija V, Golestaneh F et al (2016) Multiobjective dynamic optimal power flow considering fuzzy-Based smart utilization of mobile electric vehicles. IEEE Trans Ind Inform 12(2):503–514

    Article  Google Scholar 

  17. Manickam C, Raman GR, Raman GP et al (2016) A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters. IEEE Trans Ind Electron 63(10):6097–6106

    Article  Google Scholar 

  18. Chen G, Li C, Dong Z (2017) Parallel and distributed computation for dynamical economic dispatch. IEEE Trans Smart Grid 8(2):1026–1027

    Google Scholar 

  19. Cherukuri A, Cort J (2015) Distributed dynamic economic dispatch of power generators with storage. In: 2015 54th IEEE conference on decision and control (CDC). IEEE, 2365-2370

  20. Xu Y, Zhang W, Liu W (2015) Distributed dynamic programming-based approach for economic dispatch in smart grids. IEEE Trans Ind Inform 11(1):166–175

    Article  Google Scholar 

  21. Manbachi M, Sadu A, Farhangi H et al (2016) Impact of EV penetration on Volt-VAR Optimization of distribution networks using real-time co-simulation monitoring platform. Appl Energy 169:28–39

    Article  Google Scholar 

  22. Yang C, Huang L, Li F et al (2018) Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks. Complexity. https://doi.org/10.1155/2018/6164786

    Article  MATH  Google Scholar 

  23. Huang C, Su R, Cao J et al (2020) Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators. Math Comput Simul 171:127–135

    Article  MathSciNet  Google Scholar 

  24. Duan L, Fang X, Huang C (2018) Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math Methods Appl Sci 41(5):1954–1965

    Article  MathSciNet  Google Scholar 

  25. Duan L, Huang L, Guo Z et al (2017) Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput Math Appl 73(2):233–245

    Article  MathSciNet  Google Scholar 

  26. Huang C, Liu B, Tian X et al (2019) Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Process Lett 49(2):625–641

    Article  Google Scholar 

  27. Huang C, Zhang H, Huang L (2019) Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun Pure Appl Anal 18(6):3337–3349

    Article  MathSciNet  Google Scholar 

  28. Zhang J, Huang C (2020) Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv Differ Equ 1:1–12

    Article  MathSciNet  Google Scholar 

  29. Huang C, Yang H, Cao J (2018) Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discret Contin Dyn Syst Ser S 2018:1–14

    MATH  Google Scholar 

  30. Huang C, Zhang H, Cao J et al (2019) Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int J Bifurc Chaos 29(7):1–23

    Article  MathSciNet  Google Scholar 

  31. Huang C, Wang J, Huang L (2020) Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure. Electron J Differ Equ 61:1–17

    MathSciNet  MATH  Google Scholar 

  32. Tan Y (2020) Dynamics analysis of Mackey-Glass model with two variable delays. Math Biosci Eng 17:4513–4526

    Article  MathSciNet  Google Scholar 

  33. Huang C, Long X, Cao J (2020) Stability of antiperiodic recurrent neural networks with multiproportional delays. Math Methods Appl Sci 43(9):6093–6102

    Article  MathSciNet  Google Scholar 

  34. Manbachi M, Farhangi H, Palizban A et al (2016) A novel Volt-VAR Optimization engine for smart distribution networks utilizing Vehicle to Grid dispatch. Int J Electr Power Energy Syst 74:238–251

    Article  Google Scholar 

  35. Manbachi M, Sadu A, Farhangi H et al (2016) Real-time co-simulation platform for smart grid Volt-VAR Optimization using IEC 61850. IEEE Trans Ind Inf 12(4):1392–1402

    Article  Google Scholar 

  36. Yi P, Hong Y, Liu F (2016) Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74:259–269

    Article  MathSciNet  Google Scholar 

  37. Hernndez Miguel A, Veron (1992) Newton-Raphson’s method and convexity. Zb. Rad: prirod 22(1):159–166

    MathSciNet  MATH  Google Scholar 

  38. Das D (2006) A fuzzy multiobjective approach for network reconfiguration of distribution systems. IEEE Trans Power Deliv 21(1):202–209

    Article  Google Scholar 

  39. Kennedy J (2011) Particle swarm optimization. Encyclopedia of machine learning. Springer, US, pp 760–766

    Google Scholar 

  40. Power Systems Test Case Archive. 30 Bus Power Flow Test Case. http://www2.ee.washington.edu/research/ pstca/pf30/pg_tca30bus.htm. (Accessed Dec 2019)

  41. Chavali P, Yang P, Nehorai A (2014) A distributed algorithm of appliance scheduling for home energy management system. IEEE Trans Smart Grid 5(1):282–290

    Article  Google Scholar 

  42. Wood A, Wollenberg B (1996) Power generation operation and control. Wiley

  43. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: International conference on evolutionary programming. Springer: Berlin, Heidelberg, 591-600

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant nos: 61773320), Fundamental Research Funds for the Central Universities (Grant No. XDJK2020TY003), and also supported by the Natural Science Foundation Project of Chongqing CSTC (Grant No. cstc2018jcyjAX0583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing He.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., He, X., Liu, P. et al. Distributed Neural Network and Particle Swarm Optimization for Micro-grid Adaptive Power Allocation. Neural Process Lett 54, 3215–3233 (2022). https://doi.org/10.1007/s11063-022-10760-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10760-6

Keywords

Navigation