Skip to main content
Log in

Observer-based Adaptive Funnel Dynamic Surface Control for Nonlinear Systems with Unknown Control Coefficients and Hysteresis Input

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This article investigates an adaptive funnel dynamic surface control (DSC) problem for a class of strict-feedback uncertain nonlinear systems with unknown control coefficients and backlash-like hysteresis input. First, a neural network (NN) state observer is constructed to estimate the unmeasurable states. Second, by utilizing the approximation ability of the radial basis function-neural networks (RBF-NNs) and the backstepping control technique, an adaptive tracking control scheme is developed, which can guarantee that all closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB). Meanwhile, the DSC technique is introduced to avoid the complexity problem in the process of backstepping control. Third, by employing the funnel control (FC), the tracking error remains in a predefined funnel and converges to a prescribed interval via using a new funnel function. Finally, the superiority of the developed controller is validated by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhou Z, Tong D, Chen Q, Zhou W, Xu Y (2021) Adaptive NN control for nonlinear systems with uncertainty based on dynamic surface control. Neurocomputing 421:161–172

    Article  Google Scholar 

  2. Lu H, Jin L, Luo X, Liao B, Guo D, Xiao L (2019) RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables. IEEE Trans Ind Inf 15(11):5931–5942

    Article  Google Scholar 

  3. Kanellakopoulos I, Kokotovic PV, Morse (1991) Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans Autom Control 36(11):1241–1253

    Article  MathSciNet  MATH  Google Scholar 

  4. Madani T, Benallegue A (2006) Backstepping control for a quadrotor helicopter. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp. 3255–3260. IEEE

  5. Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 49(10):1751–1759

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou Q, Li H, Shi P (2015) Decentralized adaptive fuzzy tracking control for robot finger dynamics. IEEE Trans Fuzzy Syst 23(3):501–510

    Article  Google Scholar 

  7. Chen B, Liu XP, Ge SS, Lin C (2012) Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans Fuzzy Syst 20(6):1012–1021

    Article  Google Scholar 

  8. Li Z, Li S, Luo X (2021) An overview of calibration technology of industrial robots. IEEE-CAA J Autom 8(1):23–26

    Google Scholar 

  9. Zhang T, Ge SS, Hang CC (2000) Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12):1835–1846

    Article  MathSciNet  MATH  Google Scholar 

  10. Li T, Li Z, Wang D, Chen CP (2015) Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions. IEEE Trans Neural Netw Learn Syst 26(6):1188–1201

    Article  MathSciNet  Google Scholar 

  11. Tong D, Xu C, Chen Q, Zhou W, Xu Y (2020) Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn 100(2):1343–1358

    Article  MATH  Google Scholar 

  12. Wang H, Karimi HR, Liu PX, Yang H (2018) Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone. IEEE Trans Syst Man Cybern Syst 48(11):1897–1907

    Article  Google Scholar 

  13. Li YX, Yang GH (2018) Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications. IEEE Trans Neural Netw Learn Syst 29(12):6242–6251

    Article  MathSciNet  Google Scholar 

  14. Dong H, Gao S, Ning B, Tang T, Li Y, Valavanis KP (2020) Error-driven nonlinear feedback design for fuzzy adaptive dynamic surface control of nonlinear systems with prescribed tracking performance. IEEE Trans Syst Man Cybern Syst 50(3):1013–1023

    Article  Google Scholar 

  15. Tong Y, Tong D, Chen Q, Zhou W (2020) Finite-time state estimation for nonlinear systems based on event-triggered mechanism. Circ Syst Signal Process 39(7):3737–3757

    Article  MATH  Google Scholar 

  16. Lu D, Tong D, Chen Q, Zhou W, Zhou J, Shen S (2021) Exponential synchronization of stochastic neural networks with time-varying delays and Lévy noises via event-triggered control. Neural Process Lett 53(3):2175–2196

    Article  Google Scholar 

  17. Wang X, Li X, Wu Q, Yin X (2019) Neural network based adaptive dynamic surface control of nonaffine nonlinear systems with time delay and input hysteresis nonlinearities. Neurocomputing 333:53–63

    Article  Google Scholar 

  18. Xu C, Tong D, Chen Q, Zhou W, Shi P (2021) Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans Syst Man Cybern Syst 51(2):954–964

    Article  Google Scholar 

  19. Liu YH, Su CY, Li H (2021) Adaptive output feedback funnel control of uncertain nonlinear systems with arbitrary relative degree. IEEE Trans Autom Control 66(6):2854–2860

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen Q, Tong D, Zhou W, Xu Y, Mou J (2021) Exponential stability using sliding mode control for stochastic neutral-type systems. Circ Syst Signal Process 40:2006–2024

    Article  Google Scholar 

  21. Peng Z, Jiang Y, Wang J (2021) Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing. IEEE Trans Ind Electron 68(4):3402–3412

    Article  Google Scholar 

  22. Tao G, Kokotovic PV (1993) Adaptive control of systems with backlash. Automatica 29(2):323–335

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu C, Tong D, Chen Q, Zhou W, Xu Y (2020) Exponential synchronization of chaotic systems with stochastic noise via periodically intermittent control. Int J Robust Nonlinear Control 30(7):2611–2624

    Article  MathSciNet  MATH  Google Scholar 

  24. Ge P, Jouaneh M (1997) Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precis Eng 20(2):99–111

    Article  Google Scholar 

  25. Su CY, Stepanenko Y, Svoboda J, Leung TP (2000) Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 45(12):2427–2432

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu K, Liu Z, Chen CP, Zhang Y (2020) Event-triggered neural control of nonlinear systems with rate-dependent hysteresis input based on a new filter. IEEE Trans Neural Netw Learn Syst 31(4):1270–1284

    Article  MathSciNet  Google Scholar 

  27. Luo X, Zhou M, Li S, Wu D, Liu Z, Shang M (2021) Algorithms of unconstrained non-negative latent factor analysis for recommender systems. IEEE Trans Big Data 7(1):227–240

    Article  Google Scholar 

  28. Li S, Guo Y (2012) Distributed source seeking by cooperative robots: All-to-all and limited communications. In: 2012 IEEE international conference on robotics and automation, pp. 1107–1112. IEEE

  29. Ibrir S, Su CY (2017) Adaptive stabilization of a class of feedforward nonlinear systems subject to unknown backlash-hysteresis inputs. IEEE Trans Control Syst Technol 25(4):1180–1192

    Article  Google Scholar 

  30. Qiu J, Sun K, Rudas IJ, Gao H (2020) Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans Cybern 50(7):2905–2915

    Article  Google Scholar 

  31. Lu Y (2018) Adaptive-fuzzy control compensation design for direct adaptive fuzzy control. IEEE Trans Fuzzy Syst 26(6):3222–3231

    Article  Google Scholar 

  32. Han SI, Lee JM (2014) Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans Ind Electron 61(2):1099–1112

    Article  Google Scholar 

  33. Wang H, Liu X, Liu PX, Li S (2016) Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures. Inf Sci 336:60–74

    Article  MATH  Google Scholar 

  34. Zhou N, Liu YJ, Tong SC (2011) Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn 63(4):771–778

    Article  MathSciNet  Google Scholar 

  35. Talkhoncheh MK, Shahrokhi M, Askari MR (2017) Observer-based adaptive neural network controller for uncertain nonlinear systems with unknown control directions subject to input time delay and saturation. Inf Sci 418:717–737

    Article  MATH  Google Scholar 

  36. Tong D, Xu C, Chen Q, Zhou W (2020) Sliding mode control of a class of nonlinear systems. J Franklin Inst 357(3):1560–1581

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu X, Tong D, Chen Q, Zhou W, Liao K (2021) Observer-based adaptive NN tracking control for nonstrict-feedback systems with input saturation. Neural Process Lett 53(3):3757–3781

    Article  Google Scholar 

  38. Bai L, Zhou Q, Wang L, Yu Z, Li H (2017) Observer-based adaptive control for stochastic nonstrict-feedback systems with unknown backlash-like hysteresis. Int J Adapt Control Signal Process 31(10):1481–1490

    Article  MathSciNet  MATH  Google Scholar 

  39. Su CY, Oya M, Hong H (2003) Stable adaptive fuzzy control of nonlinear systems preceded by unknown backlash-like hysteresis. IEEE Trans Fuzzy Syst 11(1):1–8

    Article  Google Scholar 

  40. Chen B, Liu X, Lin C (2018) Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Trans Fuzzy Syst 26(3):1732–1743

    Article  Google Scholar 

  41. Yu Z, Li S, Yu Z, Li F (2018) Adaptive neural output feedback control for nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis and unknown control directions. IEEE Trans Neural Netw Learn Syst 29(4):1147–1160

    Article  MathSciNet  Google Scholar 

  42. Zhang X, Jing R, Li Z, Li Z, Chen X, Su CY (2021) Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems. IEEE/CAA J Autom Sinica 8(4):916–928

    Article  MathSciNet  Google Scholar 

  43. Sun H, Hou L, Zong G, Yu X (2020) Adaptive decentralized neural network tracking control for uncertain interconnected nonlinear systems with input quantization and time delay. IEEE Trans Neural Netw Learn Syst 31(4):1401–1409

    Article  MathSciNet  Google Scholar 

  44. Jinzhu P, Shuai D, Zeqi Y, Jianbin X (2020) Adaptive neural impedance control for electrically driven robotic systems based on a neuro-adaptive observer. Nonlinear Dyn 100(2):1359–1378

    Article  MATH  Google Scholar 

  45. Chen B, Lin C, Liu X, Liu K (2016) Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans Syst Man Cybern Syst 45(1):27–36

    Article  Google Scholar 

  46. Cao L, Li H, Zhou Q (2018) Adaptive intelligent control for nonlinear strict-feedback systems with virtual control coefficients and uncertain disturbances based on event-triggered mechanism. IEEE Trans Cybern 48(12):3390–3402

    Article  Google Scholar 

  47. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Article  Google Scholar 

  48. Liu Z, Lai G, Zhang Y, Chen CP (2015) Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model. IEEE Trans Fuzzy Syst 23(6):1998–2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbing Tong or Qiaoyu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partly supported by the National Natural Science Foundation of China (61673257, 61772018), the Natural Science Foundation of Shanghai (20ZR1422400), and China Postdoctoral Science Foundation (2019M661322).

Appendices

Appendix 1

Then, the derivative of \(V_0\) yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_0=\;&{\dot{e}}^{\mathrm {T}}Pe+e^{\mathrm {T}}P{\dot{e}} =e^{\mathrm {T}}(A_1^{\mathrm {T}}P+PA_1)e\\&+2e^{\mathrm {T}}P(\triangle f +\xi +\varXi +d+\triangle g). \end{aligned} \end{aligned}$$
(32)

By using Lemma 1, Assumptions 2 and 4, we have

$$\begin{aligned} 2e^{\mathrm {T}}P\xi\le & {} \Vert e\Vert ^2+\Vert P\Vert ^2\Vert \xi _i^*\Vert ^2, \end{aligned}$$
(33)
$$\begin{aligned} 2e^{\mathrm {T}}P\varXi\le & {} \Vert e\Vert ^2+\Vert P\Vert ^2 \sum _{i=1}^{n}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i, \end{aligned}$$
(34)
$$\begin{aligned} 2e^{\mathrm {T}}PD\le & {} \Vert e\Vert ^2+\Vert P\Vert ^2\Vert d_i^*\Vert ^{2}, \end{aligned}$$
(35)
$$\begin{aligned} 2e^{\mathrm {T}}P\triangle f\le & {} \Vert e\Vert ^2+\Vert P\Vert ^2\Vert \triangle f\Vert ^{2}\nonumber \\\le & {} \Vert e\Vert ^2+\Vert P\Vert ^2\sum _{i=2}^{n}Q_i^2\Vert e\Vert ^2, \end{aligned}$$
(36)
$$\begin{aligned} 2e^{\mathrm {T}}P\triangle g\le & {} \Vert e\Vert ^2+\sum _{i=1}^{n-1}m_i{\hat{x}}_{i+1}^2, \end{aligned}$$
(37)

where \(m_i=\Vert P\Vert ^2|g_i-g_{i,0}|^2\).

Appendix 2

Step 1: From (10), (13) and (14), the derivative of \(z_1\) is given as

$$\begin{aligned} \begin{aligned} {\dot{z}}_1=&\frac{\dot{\omega _1}}{\sqrt{F_{\varPsi }^2-\omega _1^2}}- \frac{\omega _1}{(F_{\varPsi }^2-\omega _1^2)^{\frac{3}{2}}}(F_{\varPsi }{\dot{F}}_{\varPsi }-\omega _1\dot{\omega _1})\\ =&\frac{F_{\varPsi }^2}{\sqrt{(F_{\varPsi }^2-\omega _1^2)^3}}(\dot{\omega _1}-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }})\\ =&\varPi _1({\dot{x}}_1-{\dot{y}}_d-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }})\\ =&\varPi _1(g_1x_2+f_1(x_1)+d_1-{\dot{y}}_d-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }})\\ =&\varPi _1(g_1({\hat{x}}_2+e_2)+f_1(x_1)+d_1-{\dot{y}}_d-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }}), \end{aligned} \end{aligned}$$
(38)

where \(\varPi _1=\frac{F_{\varPsi }^2}{\sqrt{(F_{\varPsi }^2-\omega _1^2)^3}}\).

Choose a Lyapunov function as

$$\begin{aligned} V_1=V_0+\frac{1}{2}z_1^2+\frac{1}{2}\varrho _2^2+\frac{g_1}{2\epsilon _1}{\tilde{\varTheta }}_1^2 +\frac{\iota _1}{2\eta _1}{\tilde{W}}_1^{{\mathrm {T}}}{\tilde{W}}_1, \end{aligned}$$
(39)

where \(\iota _1\), \(\eta _1\) and \(\epsilon _1\) are positive parameters. \({\tilde{\varTheta }}_1=\varTheta _1^*-\varTheta _1\), and \(\varTheta _1\) is the estimation of \(\varTheta _1^*\), and \({\tilde{W}}_1=W_1^*-W_1\).

Then, the derivative of \(V_1\) is calculated as follows

$$\begin{aligned} \begin{aligned} {\dot{V}}_1=&{\dot{V}}_0+z_1{\dot{z}}_1+\varrho _2{\dot{\varrho }}_2 -\frac{g_1}{\epsilon _1}{\tilde{\varTheta }}_1{\dot{\varTheta }}_1 -\frac{\iota _1}{\eta _1}{\tilde{W}}_1^{{\mathrm {T}}}{\dot{W}}_1\\ \le&-\lambda _0\Vert e\Vert ^2+\Vert P\Vert ^2\sum _{i=1}^{n}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i+\varPhi _0+\sum _{i=1}^{n-1}m_i{\hat{x}}_{i+1}^2\\&-\frac{g_1}{\epsilon _1}{\tilde{\varTheta }}_1{\dot{\varTheta }}_1 -\frac{\iota _1}{\eta _1}{\tilde{W}}_1^{{\mathrm {T}}}{\dot{W}}_1+\varPi _1z_1(g_1e_2+d_1)\\&+\varrho _2{\dot{\varrho }}_2 +z_1\varPi _1\left( g_1{\hat{x}}_2+(W_1^*)^{\mathrm {T}}\varphi _1(x_1)+\xi _1(x_1)-{\dot{y}}_d-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }}\right) . \end{aligned} \end{aligned}$$
(40)

According to Lemma 1, one has

$$\begin{aligned} \begin{aligned} \varPi _1z_1g_1e_2\le&\frac{1}{2}g_1^2\varPi _1^2z_1^2+\frac{1}{2}\Vert e\Vert ^2,\\ \varPi _1z_1d_1\le&\frac{1}{2}\varPi _1^2z_1^2+\frac{1}{2}(d_1^*)^{2}. \end{aligned} \end{aligned}$$
(41)

Substituting (41), \(z_2={\hat{x}}_2-H_2\) into (40) and defining \(\varrho _2=H_2-\alpha _1\), it yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_1\le&-(\lambda _0-\frac{1}{2})\Vert e\Vert ^2+\Vert P\Vert ^2\sum _{i=1}^{n}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i+\varPhi _0\\&+\sum _{i=1}^{n-1}m_i{\hat{x}}_{i+1}^2-\frac{g_1}{\epsilon _1}{\tilde{\varTheta }}_1{\dot{\varTheta }}_1 -\frac{\iota _1}{\eta _1}{\tilde{W}}_1^{\mathrm {T}}{\dot{W}}_1 +\varrho _2{\dot{\varrho }}_2\\&+g_1\varPi _1z_1(z_2+\varrho _2+\alpha _1)+z_1F_1-\frac{g_1^2}{2}\varPi _1^2z_1^2\\&+z_1\varPi _1{\tilde{W}}_1^{{\mathrm {T}}}\varphi _1(x_1) -z_1^2\sum _{l=1}^{n-1}q_{l1}(z_1)+\frac{1}{2}(d_1^*)^{2}, \end{aligned} \end{aligned}$$
(42)

where

$$\begin{aligned} \begin{aligned} F_1(x_1, z_1, {\dot{y}}_d)=&\varPi _1(g_1^2\varPi _1z_1+\frac{1}{2}\varPi _1z_1+W_1^{\mathrm {T}}\varphi _1(x_1)\\&+\xi _1(x_1)-\frac{\omega _1{\dot{F}}_{\varPsi }}{F_{\varPsi }}-{\dot{y}}_d)+z_1\sum _{l=1}^{n-1}q_{l1}(z_1). \end{aligned} \end{aligned}$$

Applying the RBF-NNs \(\theta _1^{\mathrm {T}}S_1(Z_1)\) to approximate the packaged function \(F_1\), we can obtain

$$\begin{aligned} F_1=\theta _1^{\mathrm {T}}S_1(Z_1)+\sigma _1(Z_1),~|\sigma _1|\le \sigma _1^* \end{aligned}$$
(43)

where \(Z_1=(x_1, z_1, {\dot{y}}_d)\). \(\sigma _1\) denotes the estimation error and \(\sigma _1^*>0\) is an arbitrarily small estimation accuracy.

For simplicity, let \(S_1(Z_1)=S_1\) and \(\sigma _1(Z_1)=\sigma _1\). It follows from Lemma 1 that

$$\begin{aligned} \begin{aligned} z_1F_1=&z_1\theta _1^{\mathrm {T}}S_1+z_1\sigma _1\\ \le&\frac{g_1}{2a_1^2}z_1^2\varTheta _1^*S_1^{\mathrm {T}}S_1+\frac{1}{2}a_1^2+\frac{g_1}{2}z_1^2+\frac{1}{2g_1}(\sigma _1^*)^{2}, \end{aligned} \end{aligned}$$
(44)

with \(\varTheta _1^*=\frac{\Vert \theta _1\Vert ^2}{g_1}\), and \(a_1>0\).

$$\begin{aligned} g_1\varPi _1z_1\varrho _2\le \frac{g_1^2}{2}\varPi _1^2z_1^2+\frac{1}{2}\varrho _2^2. \end{aligned}$$
(45)

According to the design procedures of DSC, the following first-order low-pass filter will be employed to filter \(\alpha _1\) and to obtain \(H_2\)

$$\begin{aligned} \beta _2{\dot{H}}_2+H_2=\alpha _1,~H_2(0)=\alpha _1(0), \end{aligned}$$
(46)

where \(\beta _2>0\) is a time constant, \(H_2\) is the output of the low-pass filter.

According to (46) and \(\varrho _2=H_2-\alpha _1\), we have \(\dot{H_2}=\frac{\alpha _1-H_2}{\beta _2}\). It is easy to learn \({\dot{H}}_2=-\frac{\varrho _2}{\beta _2}\). Therefore, we can obtain

$$\begin{aligned} \begin{aligned} {\dot{\varrho }}_2={\dot{H}}_2-{\dot{\alpha }}_1=&-\frac{\varrho _2}{\beta _2}-{\dot{\alpha }}_1, \\ |{\dot{\varrho }}_2+\frac{\varrho _2}{\beta _2}|\le&\varLambda _2 (z_1, z_2, \varrho _2, \varTheta _1, y_d, {\dot{y}}_d, \ddot{y}_d), \end{aligned} \end{aligned}$$
(47)

where \(\varLambda _2\) is a nonnegative continuous function and its definition can be found in [17]. Meanwhile \(\varLambda _2\) satisfies \(\varLambda _2\le M_2\), and \(M_2\) is the upper bound.

Based on Lemma 1, (47) can be written as

$$\begin{aligned} {\dot{\varrho }}_2\varrho _2\le -\frac{\varrho _2^2}{\beta _2}+|\varrho _2|\varLambda _2 \le -\frac{\varrho _2^2}{\beta _2}+\frac{1}{2}\varrho _2^2+\frac{1}{2}M_2^2. \end{aligned}$$
(48)

From (16), one has

$$\begin{aligned} \varPi _1g_1z_1\alpha _1=-\frac{g_1}{2a_1^2}z_1^2\varTheta _1S_1^{\mathrm {T}}S_1 -\frac{g_1}{2}z_1^2-g_1k_1z_1^2. \end{aligned}$$
(49)

Substituting (44)–(49) into (42), \({\dot{V}}_1\) is described as

$$\begin{aligned} \begin{aligned} {\dot{V}}_1\le&-(\lambda _0-\frac{1}{2})\Vert e\Vert ^2+\Vert P\Vert ^2\sum _{i=1}^{n}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i+\varPhi _0\\&+\sum _{i=1}^{n-1}m_i{\hat{x}}_{i+1}^2 -z_1^2\sum _{l=1}^{n-1}q_{l1}(z_1) +g_1\varPi _1z_1z_2\\&-g_1k_1z_1^2-\frac{1}{\beta _2}\varrho _2^2+\varrho _2^2 +\frac{1}{2}a_1^2+\frac{1}{2g_1}(\sigma _1^*)^{2}\\&+\frac{1}{2}(d_1^*)^{2}+\frac{1}{2}M_2^2 +\frac{g_1\gamma _1}{\epsilon _1}{\tilde{\varTheta }}_1\varTheta _1 +\frac{\iota _1\kappa _1}{\eta _1}{\tilde{W}}_1^{\mathrm {T}}W_1. \end{aligned} \end{aligned}$$
(50)

Based on Lemma 1, we have

$$\begin{aligned} \frac{g_1\gamma _1}{\epsilon _1}{\tilde{\varTheta }}_1\varTheta _1\le & {} \frac{g_1\gamma _1}{2\epsilon _1} (\varTheta _1^*)^{2}-\frac{g_1\gamma _1}{2\epsilon _1}{\tilde{\varTheta }}_1^2, \end{aligned}$$
(51)
$$\begin{aligned} \frac{\iota _1\kappa _1}{\eta _1}{\tilde{W}}_1^{\mathrm {T}}W_1\le & {} \frac{\iota _1\kappa _1}{2\eta _1}({\tilde{W}}_1^*)^{\mathrm {T}}W_1^* +\frac{\iota _1\kappa _1}{2\eta _1}{\tilde{W}}_1^{\mathrm {T}}{\tilde{W}}_1. \end{aligned}$$
(52)

Substituting (51) and (52) into (50), yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_1\le&-\lambda _1\Vert e\Vert ^2+\varPhi _1+\sum _{i=1}^{n-1}m_i{\hat{x}}_{i+1}^2 -z_1^2\sum _{l=1}^{n-1}q_{l1}(z_1)\\&+\varPi _1g_1z_1z_2-g_1k_1z_1^2-\frac{1}{\beta _2}\varrho _2^2+\varrho _2^2 -\frac{g_1\gamma _1}{2\epsilon _1}{\tilde{\varTheta }}_1^2\\&-\frac{\iota _1\kappa _{1}}{2\eta _1}{\tilde{W}}_1^{\mathrm {T}}{\tilde{W}}_1+\Vert P\Vert ^2\sum _{i=1}^{n}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i, \end{aligned} \end{aligned}$$
(53)

where

$$\begin{aligned} \begin{aligned} \lambda _1=&\lambda _0-\frac{1}{2},\\ \varPhi _1=&\varPhi _0+\frac{1}{2}a_1^2+\frac{1}{2g_1}(\sigma _1^*)^{2}+\frac{g_1\gamma _1}{2\epsilon _1}(\varTheta _1^*)^{2}\\&+\frac{\iota _1\kappa _1}{2\eta _1}(W_1^*)^{\mathrm {T}}W_1^*+\frac{1}{2}(d_1^*)^{2}+\frac{1}{2}M_2^2. \end{aligned} \end{aligned}$$

Step 2: From (8) and (14), one has

$$\begin{aligned} \begin{aligned} {\dot{z}}_2=&\dot{{\hat{x}}}_2-{\dot{H}}_2\\ =&g_{2,0}{\hat{x}}_3+l_2e_1+W_2^{\mathrm {T}}\varphi _2(\hat{{\bar{x}}}_2)-{\dot{H}}_2. \end{aligned} \end{aligned}$$
(54)

Consider the following Lyapunov function

$$\begin{aligned} V_2=\frac{1}{2}z_2^2+\frac{1}{2}\varrho _3^2+\frac{g_{2,0}}{2\epsilon _2}{\tilde{\varTheta }}_2^2 +\frac{\iota _2}{2\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}{\tilde{W}}_2, \end{aligned}$$
(55)

where \(\iota _2\), \(\epsilon _2\) and \(\eta _2\) are positive design parameters and \({\tilde{\varTheta }}_2=\varTheta _2^*-\varTheta _2\) is the approximation error, \(\varTheta _2\) is the estimation of \(\varTheta _2^*\), and \({\tilde{W}}_2=W_2^*-W_2\).

According to (53), (54), \(z_3={\hat{x}}_3-H_3\) and \(\varrho _3=H_3-\alpha _2\), the derivative of \(V_2\) satisfies

$$\begin{aligned} \begin{aligned} {\dot{V}}_2=&z_2{\dot{z}}_2+\varrho _3{\dot{\varrho }}_3-\frac{g_{2,0}}{\epsilon _2}{\tilde{\varTheta }}_2{\dot{\varTheta }}_2 -\frac{\iota _2}{\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}{\dot{W}}_2\\ =&z_2(g_{2,0}(z_3+\varrho _3+\alpha _2)+l_2e_1 +W_2^{{\mathrm {T}}}\varphi _2(\hat{{\bar{x}}}_2)-{\dot{H}}_2)\\&+\varrho _3{\dot{\varrho }}_3-\frac{g_{2,0}}{\epsilon _2}{\tilde{\varTheta }}_2{\dot{\varTheta }}_2 -\frac{\iota _2}{\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}{\dot{W}}_2. \end{aligned} \end{aligned}$$
(56)

Based on \(f_2(\hat{{\bar{x}}}_2)=(W_2^*)^{\mathrm {T}}\varphi _2(\hat{{\bar{x}}}_2)+\xi _2(\hat{{\bar{x}}}_2)\), we can obtain

$$\begin{aligned} \begin{aligned} {\dot{V}}_2=&z_2(F_2+g_{2,0}(z_3+\varrho _3+\alpha _2) -{\tilde{W}}_2^{\mathrm {T}}\varphi _2(\hat{{\bar{x}}}_2))+\varrho _3{\dot{\varrho }}_3-z_2^2\sum _{l=1}^{n-1}q_{l1}(z_2)\\&-\varPi _1g_1z_1z_2 -\frac{g_{2,0}}{\epsilon _2}{\tilde{\varTheta }}_2{\dot{\varTheta }}_2 -\frac{\iota _2}{\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}{\dot{W}}_2, \end{aligned} \end{aligned}$$
(57)

where

$$\begin{aligned} \begin{aligned} F_2&(x_1, {\hat{x}}_1, {\hat{x}}_2, z_1, z_2, {\dot{H}}_2)=\varPi _1g_1z_1+l_2e_1-f_2(\hat{{\bar{x}}}_2)\\&+\xi _2(\hat{{\bar{x}}}_2)-{\dot{H}}_2+z_2\sum _{l=1}^{n-1}q_{l2}(z_2). \end{aligned} \end{aligned}$$

Applying the RBF-NNs \(\theta _2^{\mathrm {T}}S_2(Z_2)\) to approximate the packaged function \(F_2\), one has

$$\begin{aligned} F_2=\theta _2^{\mathrm {T}}S_2(Z_2)+\sigma _2(Z_2),~|\sigma _2|\le \sigma _2^* \end{aligned}$$
(58)

where \(Z_2=(x_1, {\hat{x}}_1, {\hat{x}}_2, z_1, z_2, {\dot{H}}_2)\). \(\sigma _2\) denotes the estimation error and \(\sigma _2^*>0\) is an arbitrarily small estimation accuracy.

For simplicity, let \(S_2(Z_2)=S_2\) and \(\sigma _2(Z_2)=\sigma _2\). According to Lemma 1, the following inequality can be obtained

$$\begin{aligned} z_2F_2= & {} z_2\theta _2^{\mathrm {T}}S_2+z_2\sigma _2\nonumber \\\le & {} \frac{g_{2,0}}{2a_2^2}z_2^2\varTheta _2^*S_2^{\mathrm {T}}S_2+\frac{1}{2}a_2^2+\frac{g_{2,0}}{2}z_2^2+\frac{1}{2g_{2,0}}(\sigma _2^*)^{2}, \end{aligned}$$
(59)
$$\begin{aligned} g_{2,0}z_2\varrho _3\le & {} \frac{g_{2,0}^2}{2}z_2^2+\frac{1}{2}\varrho _3^2. \end{aligned}$$
(60)

where \(\varTheta _2^*=\frac{\Vert \theta _2\Vert ^2}{g_{2,0}}\), and \(a_2\) is a positive design parameter.

Let \(\alpha _2\) pass through the following first-order filter to obtain \(H_3\)

$$\begin{aligned} \beta _3{\dot{H}}_3+H_3=\alpha _2,~H_3(0)=\alpha _2(0), \end{aligned}$$
(61)

where \(\beta _3>0\) is a time constant, \(H_3\) is the output of the low-pass filter.

According to (61), we have \(\dot{H_3}=\frac{\alpha _2-H_3}{\beta _3}\). Defining \(\varrho _3=H_3-\alpha _2\), it is easy to learn \({\dot{H}}_3=-\frac{\varrho _3}{\beta _3}\). Therefore, we can obtain

$$\begin{aligned} \begin{aligned} {\dot{\varrho }}_3={\dot{H}}_3-{\dot{\alpha }}_2=&-\frac{\varrho _3}{\beta _3}-{\dot{\alpha }}_2,\\ |{\dot{\varrho }}_3+\frac{\varrho _3}{\beta _3}|\le&\varLambda _3({\bar{z}}_3, \varrho _2, \varrho _3, \varTheta _1, \varTheta _2, y_d, {\dot{y}}_d, \ddot{y}_d), \end{aligned} \end{aligned}$$
(62)

where \(\varLambda _3\) is a nonnegative continuous function and its definition can be found in [17]. Meanwhile \(\varLambda _3\) satisfies \(\varLambda _3\le M_3\), and \(M_3\) is the upper bound.

According to Lemma 1, (62) can be written as

$$\begin{aligned} \begin{aligned} {\dot{\varrho }}_3\varrho _3\le&-\frac{\varrho _3^2}{\beta _3}+|\varrho _3|\varLambda _3\\ \le&-\frac{\varrho _3^2}{\beta _3}+\frac{1}{2}\varrho _3^2+\frac{1}{2}M_3^2. \end{aligned} \end{aligned}$$
(63)

According to (17), we can easy to obtain

$$\begin{aligned} g_{2,0}z_2\alpha _2=\frac{-g_{2,0}}{2a_2^2}z_2^2\varTheta _2S_2^{\mathrm {T}}S_2-g_{2,0}z_2^2 -g_{2,0}k_2z_2^2. \end{aligned}$$
(64)

By the utilization of (59)–(64), \({\dot{V}}_2\) can be given as

$$\begin{aligned} \begin{aligned} {\dot{V}}_2\le&-z_2^2\sum _{l=1}^{n-1}q_{l2}(z_2)+\frac{1}{2}a_2^2 -\frac{1}{\beta _3}\varrho _3^2+\frac{1}{2}\varrho _3^2\\&+\frac{1}{2g_{2,0}}(\sigma _2^*)^{2}-g_{2,0}k_2z_2^2+g_{2,0}z_2z_3-\varPi _1g_1z_1z_2\\&+\frac{1}{2}M_3^2+\frac{g_{2,0}\gamma _2}{\epsilon _2}{\tilde{\varTheta }}_2\varTheta _2 +\frac{\iota _2\kappa _2}{\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}W_2. \end{aligned} \end{aligned}$$
(65)

Using Lemma 1, one has

$$\begin{aligned} \begin{aligned} \frac{g_{2,0}\gamma _2}{\epsilon _2}{\tilde{\varTheta }}_2^{\mathrm {T}}\varTheta _2 \le&\frac{g_{2,0}\gamma _2}{2\epsilon _2}(\varTheta _2^*)^{\mathrm {T}}\varTheta _2^* -\frac{g_{2,0}\gamma _2}{2\epsilon _2}{\tilde{\varTheta }}_2^{\mathrm {T}}{\tilde{\varTheta }}_2,\\ \frac{\iota _2\kappa _2}{\eta _2}{\tilde{W}}_2^{\mathrm {T}}W_2 \le&\frac{\iota _2\kappa _2}{W_2}(W_2^*)^{\mathrm {T}}W_2^* -\frac{\iota _2\kappa _2}{\eta _2}{\tilde{W}}_2^{\mathrm {T}}{\tilde{W}}_2. \end{aligned} \end{aligned}$$
(66)

According to (57), \({\dot{V}}_2\) can be expressed as

$$\begin{aligned} \begin{aligned} {\dot{V}}_2\le&-z_2^2\sum _{l=1}^{n-1}q_{l2}(z_2)-g_{2,0}k_2z_2^2+g_{2,0}z_2z_3-\varPi _1g_1z_1z_2 -\frac{1}{\beta _3}\varrho _3^2\\&+\varrho _3^2-\frac{g_{2,0}\gamma _2}{\epsilon _2}{\tilde{\varTheta }}_2^2 -\frac{\iota _2\kappa _2}{\eta _2}{\tilde{W}}_2^{{\mathrm {T}}}{\tilde{W}}_2+\varPhi _2, \end{aligned} \end{aligned}$$
(67)

where

$$\begin{aligned} \begin{aligned} \varPhi _2=&\frac{1}{2}a_2^2+\frac{1}{2g_{2,0}}(\sigma _2^*)^2 +\frac{g_{2,0}\gamma _2}{2\epsilon _2}(\varTheta _2^*)^{2} +\frac{\iota _2\gamma _2}{2\eta _2}(W_2^*)^{\mathrm {T}}W_2^* +\frac{1}{2}M_3^2. \end{aligned} \end{aligned}$$

Step i (\(3\le i \le n - 1\)): From (8) and (14), we can obtain

$$\begin{aligned} \begin{aligned} {\dot{z}}_i=&\dot{{\hat{x}}}_i-{\dot{H}}_i\\ =&g_{i,0}{\hat{x}}_{i+1}+l_ie_1+W_i^{\mathrm {T}}\varphi _i(\hat{{\bar{x}}}_i)-{\dot{H}}_i. \end{aligned} \end{aligned}$$
(68)

Consider the following Lyapunov function

$$\begin{aligned} V_i=\frac{1}{2}z_i^2+\frac{1}{2}\varrho _{i+1}^2+\frac{g_{i,0}}{2\epsilon _i}{\tilde{\varTheta }}_i^2 +\frac{\iota _i}{2\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i, \end{aligned}$$
(69)

where \(\iota _i>0\), \(\epsilon _i>0\) and \(\eta _i>0\) are design parameters, \({\tilde{\varTheta }}_i=\varTheta _i^*-\varTheta _i\) is the estimation error, \(\varTheta _i\) is the estimation of \(\varTheta _i^*\), and \({\tilde{W}}_i=W_i^*-W_i\).

Similar to Step 2, \({\dot{V}}_i\) can be calculated as

$$\begin{aligned} \begin{aligned} {\dot{V}}_i=&z_i{\dot{z}}_i+\varrho _{i+1}{\dot{\varrho }}_{i+1} -\frac{g_{i,0}}{\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}{\dot{\varTheta }}_i -\frac{\iota _i}{\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\dot{W}}_i\\ =&z_i(g_{i,0}{\hat{x}}_{i+1}+l_ie_1+W_i^{\mathrm {T}}\varphi _i(\hat{{\bar{x}}}_i) -{\dot{H}}_i)+\varrho _{i+1}{\dot{\varrho }}_{i+1}\\&-\frac{g_{i,0}}{\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}{\dot{\varTheta }}_i -\frac{\iota _i}{\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\dot{W}}_i\\ =&z_i(g_{i,0}(z_{i+1}+\varrho _{i+1}+\alpha _i) +F_i-{\tilde{W}}_i^{\mathrm {T}}\varphi _i(\hat{{\bar{x}}}_i)) +\varrho _{i+1}{\dot{\varrho }}_{i+1}\\&-z_{i}^2\sum _{l=i-1}^{n-1}q_{l,i}(z_i) -g_{i-1,0}z_{i-1}z_i -\frac{\iota _i}{\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\dot{W}}_i -\frac{g_{i,0}}{\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}{\dot{\varTheta }}_i, \end{aligned} \end{aligned}$$
(70)

where

$$\begin{aligned} \begin{aligned} F_i(x_1, \hat{{\bar{x}}}_i,&z_{i-1}, z_i, {\dot{H}}_i)=g_{i-1,0}z_{i-1} +l_ie_1-f_i(\hat{{\bar{x}}}_i)\\&+\xi _i(\hat{{\bar{x}}}_i)+{\dot{H}}_{i}+z_i\sum _{l=i-1}^{n-1}q_{l,i}(z_i). \end{aligned} \end{aligned}$$

Applying the RBF-NNs \(\theta _i^{\mathrm {T}}S_i(Z_i)\) to approximate the packaged function \(F_i\), one has

$$\begin{aligned} F_i=\theta _i^{\mathrm {T}}S_i(Z_i)+\sigma _i(Z_i),~|\sigma _i|\le \sigma _i^*, \end{aligned}$$
(71)

where \(Z_i=(x_1, \hat{{\bar{x}}}_i, z_{i-1}, z_i, {\dot{H}}_i)\). \(\sigma _i\) denotes the estimation error and \(\sigma _i^*>0\) is an arbitrarily small estimation accuracy.

For simplicity, let \(S_i(Z_i)=S_i\) and \(\sigma _i(Z_i)=\sigma _i\). Using Lemma 1, one has

$$\begin{aligned} z_iF_i= & {} z_i\theta _i^{\mathrm {T}}S_i+z_i\sigma _i\nonumber \\\le & {} \frac{g_{i,0}}{2a_i^2}\varTheta _i^*S_i^{\mathrm {T}}S_i+\frac{1}{2}a_i^2 +\frac{g_{i,0}}{2}z_i^2+\frac{1}{2g_{i,0}}(\sigma _i^*)^{2}, \end{aligned}$$
(72)
$$\begin{aligned} g_{i,0}z_i\varrho _{i+1}\le & {} \frac{g_{i,0}^2}{2}z_i^2+\frac{1}{2}\varrho _{i+1}^2, \end{aligned}$$
(73)

where \(\varTheta _i^*=\frac{\Vert \theta _i\Vert }{g_{i,0}}\), and \(a_i\) is the positive design parameter.

Let \(\alpha _i\) pass through the following first-order filter to obtain \(H_{i+1}\)

$$\begin{aligned} \beta _{i+1}{\dot{H}}_{i+1}+H_{i+1}=\alpha _i,~H_{i+1}(0)=\alpha _i(0), \end{aligned}$$
(74)

where \(\beta _{i+1}\) is a positive constant, \(H_{i+1}\) is the output of the low-pass filter.

According to (74), we have \({\dot{H}}_{i+1}=\frac{\alpha _i-H_{i+1}}{\beta _i}\). Defining \(\varrho _{i+1}=H_{i+1}-\alpha _i\), it is easy to learn \({\dot{H}}_{i+1}=-\frac{\varrho _{i+1}}{\beta _{i+1}}\). Therefore, we have

$$\begin{aligned} \begin{aligned} {\dot{\varrho }}_{i+1}={\dot{H}}_{i+1}-{\dot{\alpha }}_i=&-\frac{\varrho _{i+1}}{\beta _{i+1}}-{\dot{\alpha }}_i,\\ |{\dot{\varrho }}_{i+1}+\frac{\varrho _{i+1}}{\beta _{i+1}}|\le&\varLambda _{i+1}({\bar{z}}_{i+1}, \varrho _2,\ldots , \varrho _{i+1}, \\&\varTheta _1, \ldots , \varTheta _i,y_d, {\dot{y}}_d, \ddot{y}_d), \end{aligned} \end{aligned}$$
(75)

where \(\varLambda _{i+1}\) is a nonnegative function and its definition can be found in [17]. Meanwhile \(\varLambda _{i+1}\) satisfies \(\varLambda _{i+1}\le M_{i+1}\), and \(M_{i+1}\) is the upper bound.

According to Lemma 1, (75) can be written as

$$\begin{aligned} \begin{aligned} {\dot{\varrho }}_{i+1}\varrho _{i+1}\le&-\frac{\varrho _{i+1}^2}{\beta _{i+1}}+|\varrho _{i+1}|\varLambda _{i+1}\\ \le&-\frac{\varrho _{i+1}^2}{\beta _{i+1}}+\frac{1}{2}\varrho _{i+1}^2+\frac{1}{2}M_{i+1}^2. \end{aligned} \end{aligned}$$
(76)

From (18), one has

$$\begin{aligned} \begin{aligned} g_{i,0}z_i\alpha _{i}=-\frac{g_{i,0}}{2a_i^2}z_i^2\varTheta _iS_i^{\mathrm {T}}S_i -g_{i,0}z_i^2-g_{i,0}k_iz_i^2. \end{aligned} \end{aligned}$$
(77)

Substituting (72)–(77) into (70), \({\dot{V}}_i\) can be rewritten as

$$\begin{aligned} \begin{aligned} {\dot{V}}_i\le&-z_{i}^2\sum _{l=i-1}^{n-1}q_{l,i}(z_i)-g_{i,0}k_iz_i^2+g_{i,0}z_iz_{i+1} -g_{i-1,0}z_{i-1}z_i\\&+\frac{1}{2}a_i^2+\frac{1}{2g_{i,0}}(\sigma _i^*)^{2}+\frac{1}{2}M_{i+1}^2 -\frac{1}{\beta _i}\varrho _{i+1}^2+\varrho _{i+1}^2 \\&+\frac{g_{i,0}\gamma _i}{\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}\varTheta _i +\frac{\iota _i\kappa _i}{\eta _i}{\tilde{W}}_i^{\mathrm {T}}W_i. \end{aligned} \end{aligned}$$
(78)

Using Lemma 1, we can obtain

$$\begin{aligned} \begin{aligned} \frac{g_{i,0}\gamma _i}{\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}\varTheta _i\le&\frac{g_{i,0}\gamma _i}{2\epsilon _i}(\varTheta _i^*)^{\mathrm {T}}\varTheta _i^* -\frac{g_{i,0}\gamma _i}{2\epsilon _i}{\tilde{\varTheta }}_i^{\mathrm {T}}{\tilde{\varTheta }}_i,\\ \frac{\iota _i\kappa _i}{\eta _i}{\tilde{W}}_i^{\mathrm {T}}W_i\le&\frac{\iota _i\kappa _i}{2\eta _i}(W_i^*)^{\mathrm {T}}W_i^* -\frac{\iota _i\kappa _i}{2\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i. \end{aligned} \end{aligned}$$
(79)

And substituting (79) into (78), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_i\le&-z_i^2\sum _{k=i-1}^{n-1}q_{k,i}(z_i)-g_{i,0}k_iz_i^2+g_{i,0}z_iz_{i+1} -g_{i-1,0}z_{i-1}z_i\\&-\frac{1}{\beta _i}\varrho _{i+1}^2+\varrho _{i+1}^2 -\frac{g_{i,0}\gamma _i}{2\epsilon _i}{\tilde{\varTheta }}_i^2 -\frac{\iota _i\kappa _i}{2\eta _i}{\tilde{W}}_i^{\mathrm {T}}{\tilde{W}}_i+\varPhi _{i}, \end{aligned} \end{aligned}$$
(80)

where

$$\begin{aligned} \varPhi _i=\frac{1}{2}a_i^2+\frac{1}{2g_{i,0}}(\sigma _i^*)^{2} +\frac{g_{i,0}\gamma _i}{2\epsilon _i}(\varTheta _i^*)^{2} +\frac{\iota _i\kappa _i}{2\eta _i}(W_i^*)^{\mathrm {T}}W_i^*+\frac{1}{2}M_{i+1}^2. \end{aligned}$$

Step n: According to (8) and (14), one has

$$\begin{aligned} \begin{aligned} {\dot{z}}_n=&\dot{{\hat{x}}}_n-{\dot{H}}_n\\ =&c v(t)+h(v)+l_ne_1+W_n^{\mathrm {T}}\varphi _n(\hat{{\bar{x}}}_n)-{\dot{H}}_n. \end{aligned} \end{aligned}$$
(81)

Define the following Lyapunov function as

$$\begin{aligned} V_n=\frac{1}{2}z_n^2+\frac{1}{2\epsilon _n}{\tilde{\varTheta }}_n^2+ \frac{\iota _n}{2\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\tilde{W}}_n, \end{aligned}$$
(82)

where \(\iota _n>0\), \(\epsilon _n>0\) and \(\eta _n>0\).

Similar to Step i, we can obtain

$$\begin{aligned} \begin{aligned} {\dot{V}}_n=&z_n{\dot{z}}_n-\frac{1}{\epsilon _n}{\tilde{\varTheta }}_n{\dot{\varTheta }}_n -\frac{\iota _n}{\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\dot{W}}_n\\ =&z_n(c v(t)+h(v)+l_ne_1+W_n^{\mathrm {T}}\varphi _n(\hat{{\bar{x}}}_n)-{\dot{H}}_{n})\\&-\frac{1}{\epsilon _n}{\tilde{\varTheta }}_n{\dot{\varTheta }}_n -\frac{\iota _n}{\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\dot{W}}_n\\ =&z_n(F_n+c v(t)+h(v)-{\tilde{W}}_n^{\mathrm {T}}\varphi _n(\hat{{\bar{x}}}_n))\\&-g_{n-1,0}z_{n-1}z_{n}-\frac{1}{\epsilon _n}{\tilde{\varTheta }}_n{\dot{\varTheta }}_n -\frac{\iota _n}{\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\dot{W}}_n, \end{aligned} \end{aligned}$$
(83)

where

$$\begin{aligned} \begin{aligned} F_n(x_1, \hat{{\bar{x}}}_n,&z_{n-1}, z_n, {\dot{H}}_n)=g_{n-1,0}z_{n-1}+l_ne_1\\&-f_n(\hat{{\bar{x}}}_n)+\xi _n(\hat{{\bar{x}}}_n)+{\dot{H}}_{n}+z_nq_{n-1,n}(z_n). \end{aligned} \end{aligned}$$

Applying the RBF-NNs \(\theta _n^{\mathrm {T}}S_n(Z_n)\) to approximate the packaged function \(F_n\), one has

$$\begin{aligned} F_n=\theta _n^{\mathrm {T}}S_n(Z_n)+\sigma _n(Z_n),~|\sigma _n|\le \sigma _n^* \end{aligned}$$
(84)

where \(Z_n=(x_1, \hat{{\bar{x}}}_n, z_{n-1}, z_n, {\dot{H}}_n)\). \(\sigma _n\) denotes the estimation error and \(\sigma _n^*>0\) is an arbitrarily small estimation accuracy.

For simplicity, let \(S_n(Z_n)=S_n\) and \(\sigma _n(Z_n)=\sigma _n\). According to Lemma 1, we can obtain

$$\begin{aligned} \begin{aligned} z_nF_n=&z_n\theta _n^{\mathrm {T}}S_n+z_n\sigma _n\\ \le&\frac{1}{2a_n^2}z_n^2\varTheta _n^*S_n^{\mathrm {T}}S_n+\frac{1}{2}a_n^2+\frac{1}{2}z_n^2+\frac{1}{2}(\sigma _n^*)^{2}, \end{aligned} \end{aligned}$$
(85)

where \(\varTheta _n^*=\Vert \theta _n\Vert ^2\), and \(a_n\) is a positive constant.

Substituting (19) and (85) into (83), it yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_{n}\le&-(k_n-\frac{1}{2})z_n^2-g_{n-1,0}z_{n-1}z_n +\frac{1}{2}a_n^2+\frac{1}{2}(\sigma _n^*)^{2}\\&+\frac{\gamma _n}{\epsilon _n}{\tilde{\varTheta }}_n\varTheta _n +\frac{\iota _n}{\eta _n}{\tilde{W}}_n^{\mathrm {T}}W_n+z_nd(v). \end{aligned} \end{aligned}$$
(86)

Based on Lemma 1, one has

$$\begin{aligned} \frac{\gamma _n}{\epsilon _n}{\tilde{\varTheta }}_n^{\mathrm {T}}\varTheta _n\le & {} \frac{\gamma _n}{2\epsilon _n}(\varTheta _n^*)^{\mathrm {T}}\varTheta _n^* -\frac{\gamma _n}{2\epsilon _n}{\tilde{\varTheta }}_n^{\mathrm {T}}{\tilde{\varTheta }}_n, \end{aligned}$$
(87)
$$\begin{aligned} \frac{\iota _n}{\eta _n}{\tilde{W}}_n^{\mathrm {T}}W_n\le & {} \frac{\iota _n}{2\eta _n}(W_n^*)^{\mathrm {T}}W_n^* -\frac{\iota _n}{2\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\tilde{W}}_n, \end{aligned}$$
(88)
$$\begin{aligned} z_nh(v)\le & {} \frac{1}{2}z_n^2+\frac{1}{2}({\bar{h}}^*)^{2}. \end{aligned}$$
(89)

Substituting (87)–(89) into (86), yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_{n}\le&-(k_n-\frac{1}{2})z_n^2-g_{n-1,0}z_{n-1}z_n -\frac{\gamma _n}{2\epsilon _n}{\tilde{\varTheta }}_n^2 -\frac{\iota _n\kappa _n}{2\eta _n}{\tilde{W}}_n^{\mathrm {T}}{\tilde{W}}_n+\varPhi _{n}, \end{aligned} \end{aligned}$$
(90)

where

$$\begin{aligned} \begin{aligned} \varPhi _{n}=&\frac{1}{2}(\sigma _{n}^*)^{2}+\frac{\gamma _{n}}{2\epsilon _n}(\varTheta _{n}^*)^{2} +\frac{1}{2}a_{n}^2+\frac{\iota _n\kappa _n}{2r_{2,n}}(W_{n}^*)^{\mathrm {T}}W_{n}^* +\frac{1}{2}({\bar{h}}^*)^{2}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tong, D., Chen, Q. et al. Observer-based Adaptive Funnel Dynamic Surface Control for Nonlinear Systems with Unknown Control Coefficients and Hysteresis Input. Neural Process Lett 54, 4681–4710 (2022). https://doi.org/10.1007/s11063-022-10827-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10827-4

Keywords

Navigation