Skip to main content
Log in

Dynamic Feedback Tracking Control for Interval Type-2 T-S Fuzzy Nonlinear System Based on Adaptive Event-Triggered Strategy

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper explores the tracking control problem for a category of discrete-time nonlinear networked control systems (NCSs) with unknown state, parameter uncertainty, data packet dropout and time delay. Our aim is to construct a dynamic tracking feedback controller with a novel event-triggered (ET) scheme to guarantee the system output can track the reference output signal within an allowable error range. With the purpose of reducing the utilization of network resources, an improved adaptive ET communication scheme is designed at first, which can save more network resources. Secondly, the uncertainties can be easily expressed by using the interval type-2 (IT2) T-S fuzzy model to describe the nonlinear systems. Next, a dynamic feedback controller with asynchronous premise variables is designed, and the sufficient conditions for less conservative stability of the system and the design method of the controller are obtained by applying slack matrices. Finally, numerical examples are provided to further illustrate the validity of the strategy proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang XM, Han QL, Yu X (2016) Survey on recent advances in networked control systems. IEEE Trans Industr Inf 12(5):1740–1752. https://doi.org/10.1109/TII.2015.2506545

    Article  Google Scholar 

  2. Wang Z, Yang F, Ho DWC, Liu X (2006) Robust H∞ filtering for stochastic time-delay systems with missing measurements. IEEE Trans Signal Process 54(7):2579–2587. https://doi.org/10.1109/TSP.2006.874370

    Article  MATH  Google Scholar 

  3. Rios JD, Alanis AY, Arana-Daniel N et al (2017) Recurrent high order neural observer for discrete-time non-linear systems with unknown time-delay. Neural Process Lett 46(2):1–17. https://doi.org/10.1007/s11063-017-9617-3

    Article  Google Scholar 

  4. Zhuang G, Ma Q, Xia J, Zhang H (2016) H∞ estimation for Markovian jump neural networks with quantization, transmission delay and packet dropout. Neural Process Lett 44(2):317–341. https://doi.org/10.1007/s11063-015-9460-3

    Article  Google Scholar 

  5. Cheng LL, Zhan XS, Wu J, Han T (2019) An optimal tracking performance of MIMO NCS with quantization and bandwidth constraints. Asian J Cont 21(2):1377–1388. https://doi.org/10.1002/asjc.1818

    Article  MathSciNet  MATH  Google Scholar 

  6. Li Q, Shen B, Liu Y, Huang T (2017) Event-triggered H∞ state estimation for discrete-time neural networks with mixed time delays and sensor saturations. Neural Comput Appl 28(12):3815–3825. https://doi.org/10.1007/s00521-016-2271-2

    Article  Google Scholar 

  7. Emmanuel B, Emmanuel M, Patrick C (2017) Stability of homogeneous nonlinear systems with sampled-data inputs. Automatica 85:349–355. https://doi.org/10.1016/j.automatica.2017.07.048

    Article  MathSciNet  MATH  Google Scholar 

  8. Ge X, Han QL, Ding D, Zhang XM, Ning B (2018) A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing 275:1684–1701. https://doi.org/10.1016/j.neucom.2017.10.008

    Article  Google Scholar 

  9. Fan Y, Mei J, Liu H, Fan Y, Liu F, Zhang Y (2020) Fast synchronization of complex networks via a periodically intermittent sliding mode control. Neural Process Lett 51:1331–1352. https://doi.org/10.1007/s11063-019-10145-2

    Article  Google Scholar 

  10. Wang H, Chen X, Wang J (2022) H∞ sliding mode control for PDT-switched nonlinear systems under the dynamic event-triggered mechanism. Appl Math Comput 412(2022):126474. https://doi.org/10.1016/j.amc.2021.126474

    Article  MathSciNet  MATH  Google Scholar 

  11. Precup R-E, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Ind 62(3):213–226. https://doi.org/10.1016/j.compind.2010.10.001

    Article  Google Scholar 

  12. Wang J, Yang C, Xia J, Wu Z, Shen H (2021) Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3070125

    Article  Google Scholar 

  13. Zhao J (2020) Neural network-based optimal tracking control of continuous-time uncertain nonlinear system via reinforcement learning. Neural Process Lett 51(3):2513–2530. https://doi.org/10.1007/s11063-020-10220-z

    Article  Google Scholar 

  14. Li H, Zhao S, He W, Lu R (2019) Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100:99–107. https://doi.org/10.1016/j.automatica.2018.10.030

    Article  MathSciNet  MATH  Google Scholar 

  15. Ping X, Pedrycz W (2020) Output feedback model predictive control of interval type-2 T-S fuzzy system with bounded disturbance. IEEE Trans Fuzzy Syst 28(1):148–162. https://doi.org/10.1109/TFUZZ.2019.2900844

    Article  Google Scholar 

  16. Ucak K (2020) A novel model predictive Runge-Kutta neural network controller for nonlinear MIMO systems. Neural Process Lett 51:1789–1833. https://doi.org/10.1007/s11063-019-10167-w

    Article  Google Scholar 

  17. Yu J, Xie Y, Tang X (2015) Model predictive control of NCS with data quantization and bounded arbitrary time delays. J Cont Sci Eng 2015:1–13. https://doi.org/10.1155/2015/259480

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang D, Han QL, Jia X (2015) Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Syst 273(2015):26–48. https://doi.org/10.1016/j.fss.2014.12.015

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao H, Chen T (2008) Network-based H∞ output tracking control. IEEE Trans Autom Control 53(3):655–667. https://doi.org/10.1109/TAC.2008.919850

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan X, Yi Y, Zhang T, Zheng W (2015) T-S fuzzy modeling-based anti-disturbance tracking control for systems with nonlinear disturbances [C]. In: IEEE 2015 34th Chinese Control Conference, pp 627–632

  21. Chen C, Liu Z, Zhang Y et al (2017) Asymptotic fuzzy tracking control for a class of stochastic strict-feedback systems. IEEE Trans Fuzzy Syst 25(3):556–568. https://doi.org/10.1109/TFUZZ.2016.2566807

    Article  Google Scholar 

  22. Gao C, Zhou X, Liu X, Yang Y, Li Z (2020) Observer-based adaptive fuzzy tracking control for a class of strict-feedback systems with event-triggered strategy and tan-type barrier Lyapunov function. Int J Fuzzy Syst 22(2020):2534–2545. https://doi.org/10.1007/s40815-020-00948-0

    Article  Google Scholar 

  23. Liu G, Zhou Q, Zhang Y, Liang H (2019) Fuzzy tracking control for nonlinear multi-agent systems with actuator faults and unknown control directions. Fuzzy Sets Syst 358(6):81–97. https://doi.org/10.1016/j.fss.2019.03.013

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen P, Li F (2018) A survey on recent advances in event-triggered communication and control. Inf Sci 457–458:113–125. https://doi.org/10.1016/j.ins.2018.04.055

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Z, Liang H, Wu C, Ahn CK (2019) Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Trans Fuzzy Syst 27(19):1793–1806. https://doi.org/10.1109/TFUZZ.2019.2891236

    Article  Google Scholar 

  26. Wang D, Wang Z, Shen B, Li Y, Alsaadi FE (2018) An event-triggered approach to robust recursive filtering for stochastic discrete time-varying spatial-temporal systems. Signal Process 145:91–98. https://doi.org/10.1016/j.sigpro.2017.11.011

    Article  Google Scholar 

  27. Park JH, Shen H, Chang XH et al (2019) Recent advances in control and filtering of dynamic systems with constrained signals. Springer International Publishing, Berlin

    Book  MATH  Google Scholar 

  28. Li Q, Shen B, Wang Z et al (2019) Synchronization control for a class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach. IEEE Trans Cybernet 49(5):1979–1986. https://doi.org/10.1109/TCYB.2018.2818941

    Article  Google Scholar 

  29. Shen B, Wang Z, Qiao H (2017) Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans Neural Netw Learn Syst 28(5):1152–1163. https://doi.org/10.1109/TNNLS.2016.2516030

    Article  Google Scholar 

  30. Li N, Li Q, Suo J (2021) Dynamic event-triggered H∞ state estimation for delayed complex networks with randomly occurring nonlinearities. Neurocomputing 421:97–104. https://doi.org/10.1016/j.neucom.2020.08.048

    Article  Google Scholar 

  31. Ran GT, Liu J, Li CJ, Chen LM, Li DY (2021) Event-based finite-time consensus control of second-order delayed multi-agent systems. IEEE Trans Circuits Syst II Express Briefs 68(1):276–280. https://doi.org/10.1109/TCSII.2020.2999480

    Article  Google Scholar 

  32. Li B, Xia J, Zhang H, Shen H (2020) Event-triggered adaptive fuzzy tracking control for nonlinear systems. Int J Fuzzy Syst 22(7):1389–1399. https://doi.org/10.1007/s40815-020-00872-3

    Article  MATH  Google Scholar 

  33. Wang L, Du H, Wu C, Li H (2016) A new compensation for fuzzy static output-feedback control of nonlinear networked discrete-time systems. Signal Process 120:255–265. https://doi.org/10.1016/j.sigpro.2015.09.014

    Article  Google Scholar 

  34. Xie XP, Dong Y, Zhang HW, Chen P (2016) Control synthesis of discrete-time T-S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans Cybernet 47(9):2480–2491. https://doi.org/10.1109/TCYB.2016.2582747

    Article  Google Scholar 

  35. Wang J, Xia J, Shen H, Xing M, Ju H (2020) H∞ synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule. IEEE Trans Fuzzy Syst 29(10):3082–3092. https://doi.org/10.1109/TFUZZ.2020.3012761

    Article  Google Scholar 

  36. Zhang Y, Tao G, Chen M (2015) Multivariable adaptive output tracking control of T-S fuzzy systems. In: The 54th IEEE Conference on Decision and Control (CDC)

  37. Lam HK, Li HY, Deters C, Secco EL, Wurdemann HA, Althoefer K (2014) Conrol design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans Industr Electron 61(2):956–968. https://doi.org/10.1109/TIE.2013.2253064

    Article  Google Scholar 

  38. Rong N, Wang Z, Zhang H (2019) Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 T-S fuzzy model approach. IEEE Trans Fuzzy Syst 27(2):249–261. https://doi.org/10.1109/TFUZZ.2018.2856181

    Article  Google Scholar 

  39. Du Z, Yan Z, Zhao Z (2019) Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst 356:92–112. https://doi.org/10.1016/j.fss.2018.02.013

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu X, Xia J, Wang J, Shen H (2021) Interval Type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application. J Syst Sci Complexity 34(2021):2195–2218. https://doi.org/10.1007/s11424-020-0106-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiao B, Lam HK, Zhou H, Gao J (2020) Analysis and design of interval type-2 polynomial-fuzzy-model-based networked tracking control systems. IEEE Trans Fuzzy Syst 99:1–1. https://doi.org/10.1109/TFUZZ.2020.3006587

    Article  Google Scholar 

  42. Li H, Wu C, Ji X, Wu L (2017) Fuzzy tracking control for nonlinear networked systems. IEEE Trans Cybernet 47(8):2020–2031. https://doi.org/10.1109/TCYB.2016.2594046

    Article  Google Scholar 

  43. Ran GT, Li CJ, Lam HK, Li DY, Han CS (2020) Event-based dissipative control of interval type-2 fuzzy markov jump systems under sensor saturation and actuator nonlinearity. IEEE Trans Fuzzy Syst 30:714–727. https://doi.org/10.1109/TFUZZ.2020.3046335

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by The Fundamental Research Funds in Heilongjiang Provincial Universities under grant 135309372, and Natural Science Foundation of Heilongjiang Province under grant LH2021F057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jia.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper. The data used to support this study are currently under embargo. Requests for data will be considered by the corresponding author, and anyone can contact the corresponding author directly if necessary. The requirements for custom code are also considered by the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Ran, G., Gong, Y. et al. Dynamic Feedback Tracking Control for Interval Type-2 T-S Fuzzy Nonlinear System Based on Adaptive Event-Triggered Strategy. Neural Process Lett 55, 1715–1740 (2023). https://doi.org/10.1007/s11063-022-10960-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10960-0

Keywords

Navigation