Skip to main content
Log in

Biomedical Image Segmentation Using Fuzzy Artificial Cell Swarm Optimization (FACSO)

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This article describes a novel unsupervised approach to segmenting biomedical images. The proposed approach will be known as Fuzzy Artificial Cell Swarm Optimization. Artificial cell swarm optimization is one of the newest metaheuristic optimization procedures, which is not widely been applied and studied to date. The proposed approach extends the concept of artificial cell swarm optimization to the domain of fuzzy segmentation with the help of a type 2 fuzzy system. The proposed approach is robust and not dependent on the initial choice of the cluster centers. The proposed approach is applied to the biomedical images and compared with the advanced versions of some of the metaheuristic procedures like GA, PSO, ACO, and the artificial cell swarm optimization itself, using both qualitative and quantitative measures. Experimental results prove the efficiency and establish the practical applicability of the proposed approach to enhance computer-aided automated diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chouhan SS, Singh UP, Jain S (2020) Applications of computer vision in plant pathology: a survey. Arch Comput Methods Eng 27:611–632. https://doi.org/10.1007/s11831-019-09324-0

    Article  MathSciNet  Google Scholar 

  2. Baldner FDO, Costa PB, Gomes JFS, Leta FR (2020) A review on computer vision applied to mechanical tests in search for better accuracy. In: Lecture notes in mechanical engineering. Springer, pp 265–281

  3. Chakraborty S, Mali K (2020) An overview of biomedical image analysis from the deep learning perspective. In: Chakraborty S, Mali K (eds) Applications of advanced machine intelligence in computer vision and object recognition: emerging research and opportunities. IGI Global

  4. Fang W, Love PED, Luo H, Ding L (2020) Computer vision for behaviour-based safety in construction: a review and future directions. Adv Eng Inform 43:100980

    Article  Google Scholar 

  5. Roy M, Chakraborty S, Mali K (2020) A robust image encryption method using chaotic skew-tent map. In: Chakraborty S, Mali K (eds) Applications of advanced machine intelligence in computer vision and object recognition: emerging research and opportunities

  6. Fang W, Ding L, Love PED et al (2020) Computer vision applications in construction safety assurance. Autom Constr 110:103013

    Article  Google Scholar 

  7. Zhang J, Huang C (2020) Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv Differ Equ 2020:1–12. https://doi.org/10.1186/S13662-020-02566-4/FIGURES/4

    Article  MathSciNet  Google Scholar 

  8. Zhang H, Qian C (2020) Convergence analysis on inertial proportional delayed neural networks. Adv Differ Equ 2020:1–10. https://doi.org/10.1186/S13662-020-02737-3/FIGURES/2

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang C, Yang L, Cao J et al (2020) Asymptotic behavior for a class of population dynamics. AIMS Math 43378(5):3378–3390. https://doi.org/10.3934/MATH.2020218

    Article  MathSciNet  MATH  Google Scholar 

  10. Manickam I, Ramachandran R, Rajchakit G et al (2020) Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen-Grossberg neural networks with Markovian jump parameters: a graph-theoretic approach. Nonlinear Anal Model Control 25:726–744. https://doi.org/10.1588/namc.2020.25.16775

    Article  MathSciNet  MATH  Google Scholar 

  11. Chakraborty S (2020) An advanced approach to detect edges of digital images for image segmentation. In: Chakraborty S, Mali K (eds) Applications of advanced machine intelligence in computer vision and object recognition: emerging research and opportunities. IGI GLobal

  12. Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:1

    Article  Google Scholar 

  13. Chakraborty S, Mali K (2018) Application of multiobjective optimization techniques in biomedical image segmentation—a study. In: Multi-objective optimization. Springer, Singapore, pp 181–194

  14. Chakraborty S, Roy M, Hore S (2016) A study on different edge detection techniques in digital image processing. In: Feature detectors and motion detection in video processing. IGI Global, pp 100–122

  15. Hore S, Chakraborty S, Chatterjee S et al (2016) An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int J Electr Comput Eng 6:2773–2780. https://doi.org/10.11591/ijece.v6i6.11801

    Article  Google Scholar 

  16. Chakraborty S, Mali K, Banerjee A, Bhattacharjee M (2021) A biomedical image segmentation approach using fractional order darwinian particle swarm optimization and thresholding. Springer, Singapore, pp 299–306

    Google Scholar 

  17. Chakraborty S, Mali K, Ghosh K, Sarkar A (2021) Penalized fuzzy C-means coupled level set based biomedical image segmentation. In: Lecture notes in networks and systems. Springer Science and Business Media Deutschland GmbH, pp 279–287

  18. Chakraborty S, Chatterjee S, Ashour AS, et al (2017) Intelligent computing in medical imaging: a study. In: Dey N (ed) Advancements in applied metaheuristic computing. IGI Global, pp 143–163

  19. Chakraborty S, Mali K (2022) Fuzzy modified cuckoo search for biomedical image segmentation. Knowl Inf Syst 2022:1–40. https://doi.org/10.1007/S10115-022-01659-8

    Article  Google Scholar 

  20. Sharma M, Bhattacharya M (2020) Discrimination and quantification of live/dead rat brain cells using a non-linear segmentation model. Med Biol Eng Comput. https://doi.org/10.1007/s11517-020-02135-7

    Article  Google Scholar 

  21. Cheng J-Z, Ni D, Chou Y-H et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6:24454. https://doi.org/10.1038/srep24454

    Article  Google Scholar 

  22. Chakraborty S, Mali K, Chatterjee S, Sen S (2021) Preprocessing and discrimination of cytopathological images. Med Internet Things Tech Pract Appl. https://doi.org/10.1201/9780429318078-3/PREPROCESSING-DISCRIMINATION-CYTOPATHOLOGICAL-IMAGES-SHOUVIK-CHAKRABORTY-KALYANI-MALI-SANKHADEEP-CHATTERJEE-SOUMYA-SEN

    Article  Google Scholar 

  23. Chakraborty S, Chatterjee S, Das A, Mali K (2020) Penalized fuzzy C-means enabled hybrid region growing in segmenting medical images. pp 41–65

  24. Tolias YA, Panas SM (1998) Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans Syst Man Cybern Part A Syst Hum 28:359–369. https://doi.org/10.1109/3468.668967

    Article  Google Scholar 

  25. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  26. Castillo O, Melin P, Kacprzyk J, Pedrycz W (2008) Type-2 fuzzy logic: theory and applications. Institute of Electrical and Electronics Engineers (IEEE), pp 145–145

  27. Chakraborty S, Mali K (2022) A radiological image analysis framework for early screening of the COVID-19 infection: a computer vision-based approach. Appl Soft Comput 119:108528. https://doi.org/10.1016/J.ASOC.2022.108528

    Article  Google Scholar 

  28. Chatterjee S, Dawn S, Hore S (2020) Artificial cell swarm optimization. Springer, Singapore, pp 196–214

    Google Scholar 

  29. Chakraborty S, Mali K (2021) A morphology-based radiological image segmentation approach for efficient screening of COVID-19. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2021.102800

    Article  Google Scholar 

  30. Chakraborty S, Mali K (2021) SUFMACS: a machine learning-based robust image segmentation framework for covid-19 radiological image interpretation. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115069

    Article  Google Scholar 

  31. Chakraborty S, Mali K (2020) SuFMoFPA: a superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114142

    Article  Google Scholar 

  32. Chakraborty S, Mali K (2020) Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation. Appl Soft Comput 97:106800. https://doi.org/10.1016/j.asoc.2020.106800

    Article  Google Scholar 

  33. Melin P, Mendoza O, Castillo O (2010) An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst Appl 37:8527–8535. https://doi.org/10.1016/j.eswa.2010.05.023

    Article  Google Scholar 

  34. Rhee FCH (2007) Uncertain fuzzy clustering: Insights and recommendations. IEEE Comput Intell Mag 2:44–56

    Article  Google Scholar 

  35. Naz S, Majeed H, Irshad H (2010) Image segmentation using fuzzy clustering: A survey. In: Proceedings of 6th international conference on emerging technologies. ICET 2010, pp 181–186

  36. Nayak J, Naik B, Behera HS (2015) Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. In: Smart innovation, systems and technologies. Springer Science and Business Media Deutschland GmbH, pp 133–149

  37. Mange D, Stauffer A, Petraglio E, Tempesti G (2004) Artificial cell division. In: BioSystems. Elsevier, pp 157–167

  38. Chakraborty S, Mali K (2022) Biomedical image segmentation using fuzzy multilevel soft thresholding system coupled modified cuckoo search. Biomed Signal Process Control 72:103324. https://doi.org/10.1016/J.BSPC.2021.103324

    Article  Google Scholar 

  39. Ding W, Chakraborty S, Mali K et al (2021) An unsupervised fuzzy clustering approach for early screening of COVID-19 from radiological images. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3097806

    Article  Google Scholar 

  40. Rhee FCH, Hwang C (2001) A type-2 fuzzy C-means clustering algorithm. In: Proceedings joint 9th IFSA world congress and 20th NAFIPS international conference (Cat. No. 01TH8569). IEEE, pp 1926–1929

  41. Hore S, Chakroborty S, Ashour AS et al (2015) Finding contours of hippocampus brain cell using microscopic image analysis. J Adv Microsc Res 10:93–103. https://doi.org/10.1166/jamr.2015.1245

    Article  Google Scholar 

  42. Davies DL, Bouldin DW (1979) A Cluster Separation Measure. IEEE Trans Pattern Anal Mach Intell PAMI 1:224–227. https://doi.org/10.1109/TPAMI.1979.4766909

    Article  Google Scholar 

  43. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847. https://doi.org/10.1109/34.85677

    Article  Google Scholar 

  44. Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4:95–104. https://doi.org/10.1080/01969727408546059

    Article  MathSciNet  MATH  Google Scholar 

  45. Pal SK, Ghosh A, Shankar BU (2000) Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation. Int J Rem Sens 21:2269–2300. https://doi.org/10.1080/01431160050029567

    Article  Google Scholar 

  46. MedPix Case. https://medpix.nlm.nih.gov/case?id=8bd669b5-6e86-4e5a-b2fa-fad020f6cc86&quiz=t. Accessed 11 June 2020

  47. MedPix Case - Acute Diverticulitis. https://medpix.nlm.nih.gov/case?id=889062ec-d5dd-463f-80f2-271a79fbc47f. Accessed 11 June 2020

  48. MedPix Case - acute infarct. https://medpix.nlm.nih.gov/case?id=1a8c19f9-0059-4398-b043-8e8553eddbf3. Accessed 11 June 2020

  49. MedPix Case - Acute ischemic stroke. https://medpix.nlm.nih.gov/case?id=a526b3b3-d307-431a-b40f-bdc68c8bb0b7. Accessed 11 June 2020

  50. MedPix Case - Acute Myocarditis. https://medpix.nlm.nih.gov/case?id=8678a4f4-a0c8-424e-af67-0982c65ba655. Accessed 11 June 2020

  51. MedPix Case - Acute Basilar Occlusion. https://medpix.nlm.nih.gov/case?id=4ebda79a-1ced-4bcb-907d-79be00eb335a. Accessed 11 June 2020

  52. MedPix Case - Acute Chest Syndrome - Sickle Cell Anemia. https://medpix.nlm.nih.gov/case?id=d12fd177-82fe-45e5-b6d3-afebbabe6dc0. Accessed 11 June 2020

  53. MedPix Case - ACTH-secreting pituitary microadenoma. https://medpix.nlm.nih.gov/case?id=2040fcb9-4946-4902-b2e7-f90958650099. Accessed 11 June 2020

  54. MedPix Case - Alzheimer’s disease (FDG PET pattern, and history). https://medpix.nlm.nih.gov/case?id=0696442f-28c1-4bfb-83a0-8e7543b7f1af. Accessed 11 June 2020

  55. MedPix Case - Airway foreign body – right bronchus intermedius. https://medpix.nlm.nih.gov/case?id=13705556-922b-456c-bc7a-db93bc6c272c. Accessed 11 Jun 2020

  56. Jia HZ, Nee AYC, Fuh JYH, Zhang YF (2003) A modified genetic algorithm for distributed scheduling problems. J Intell Manuf 14:351–362. https://doi.org/10.1023/A:1024653810491

    Article  Google Scholar 

  57. Moghaddam BF, Ruiz R, Sadjadi SJ (2012) Vehicle routing problem with uncertain demands: An advanced particle swarm algorithm. Comput Ind Eng 62:306–317. https://doi.org/10.1016/j.cie.2011.10.001

    Article  Google Scholar 

  58. Cai X, Gao XZ, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio-Inspired Comput 8:205–214. https://doi.org/10.1504/IJBIC.2016.078666

    Article  Google Scholar 

  59. Chakraborty S, Chatterjee S, Dey N et al (2017) Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microsc Res Tech. https://doi.org/10.1002/jemt.22900

    Article  Google Scholar 

  60. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and thank the editors, anonymous reviewers, and referees for their valuable comments and suggestions which are helpful in further improvement of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouvik Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Mali, K. Biomedical Image Segmentation Using Fuzzy Artificial Cell Swarm Optimization (FACSO). Neural Process Lett 55, 5215–5243 (2023). https://doi.org/10.1007/s11063-022-11088-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-11088-x

Keywords

Navigation