Skip to main content
Log in

Cancer Identification in Enteric Nervous System Preclinical Images Using Handcrafted and Automatic Learned Features

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Chronic degenerative diseases affect Enteric Neuron Cells (ENC) and Enteric Glial Cells (EGC) in shape and quantity. Thus, searching for automatic methods to evaluate when these cells are affected is quite opportune. In addition, preclinical imaging analysis is outstanding because it is non-invasive and avoids exposing patients to the risk of death or permanent disability. We aim to identify a specific cancer experimental model (Walker-256 tumor) in the Enteric Nervous System (ENS) cells. The ENS image database used in our experimental evaluation comprises 1248 images taken from thirteen rats distributed in two classes: control/healthy or sick. The images were created with three distinct contrast settings targeting different ENS cells: ENC, EGC, or both. We extracted handcrafted and non-handcrafted features to provide a comprehensive classification approach using SVM as the core classifier. We also applied Late Fusion techniques to evaluate the complementarity between feature sets obtained in different scenarios. In the best case, we achieved an F1-score of 0.9903 by combining classifiers built from different image types (ENC and EGC), using Local Phase Quantization (LPQ) features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data presented in this study will be made available in due course on GitHub at https://github.com/gustavozf/ENS_dataset.

Notes

  1. Abbot Laboratory, Chicago, IL, USA.

  2. Olympus BX 41, Tokyo, Japan.

  3. Moticam® 2500 5.0 Mega Pixel–Motic China Group Co., Shanghai, China.

  4. The name here is used to reference the texture descriptor, being disassociated with the original author.

References

  1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495. https://doi.org/10.1016/s1470-2045(10)70218-7

    Article  Google Scholar 

  2. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243. https://doi.org/10.1136/svn-2017-000101

    Article  Google Scholar 

  3. Goecks J, Jalili V, Heiser LM, Gray JW (2020) How machine learning will transform biomedicine. Cell 181(1):92–101. https://doi.org/10.1016/j.cell.2020.03.022

    Article  Google Scholar 

  4. Furness JB (2006) The enteric nervous system, vol 290. Blackwell Publishing, Hoboken

    Google Scholar 

  5. Sharkey KA (2015) Emerging roles for enteric glia in gastrointestinal disorders. J Clin Investig 125(3):918–925

    Article  Google Scholar 

  6. Felipe GZ, Zanoni JN, Sehaber-Sierakowski CC, Bossolani GD, Souza SR, Flores FC, Oliveira LES, Pereira RM, Costa YMG (2021) Automatic chronic degenerative diseases identification using enteric nervous system images. Neural Comput Appl 33(22):15373–15395

    Article  Google Scholar 

  7. Rampun A, Scotney B, Morrow P, Wang H, Winder J (2018) Breast density classification using local quinary patterns with various neighbourhood topologies. J Imaging 4(1):14. https://doi.org/10.3390/jimaging4010014

    Article  Google Scholar 

  8. Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, Madla C, Kongmebhol P, Molinari F, Ng KH, Acharya UR (2018) Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images. Comput Biol Med 95:55–62. https://doi.org/10.1016/j.compbiomed.2018.02.002

    Article  Google Scholar 

  9. Kumar MD, Babaie M, Zhu S, Kalra S, Tizhoosh HR (2017) A comparative study of CNN, BoVW and LBP for classification of histopathological images. In: 2017 IEEE symposium series on computational intelligence (SSCI), IEEE, pp 1–7

  10. Carvalho ED, Filho AOC, Silva RRV, Araújo FHD, Diniz JOB, Silva AC, Paiva AC, Gattass M (2020) Breast cancer diagnosis from histopathological images using textural features and CBIR. Artif Intell Med 105:101845. https://doi.org/10.1016/j.artmed.2020.101845

    Article  Google Scholar 

  11. de Matos J, Ataky STM, de Souza Britto A, de Oliveira LE Soares, Lameiras Koerich A (2021) Machine learning methods for histopathological image analysis: a review. Electronics 10(5):562

    Article  Google Scholar 

  12. Xu Y, Zhu J-Y, Eric I, Chang C, Lai M, Tu Z (2014) Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 18(3):591–604

    Article  Google Scholar 

  13. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N (2016) Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 35(5):1313–1321

    Article  Google Scholar 

  14. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) Breast cancer histopathological image classification using convolutional neural networks. In: 2016 international joint conference on neural networks (IJCNN), IEEE, pp 2560–2567

  15. Spanhol FA, Oliveira LS, Cavalin PR, Petitjean C, Heutte L (2017) Deep features for breast cancer histopathological image classification. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 1868–1873

  16. Vo DM, Nguyen N-Q, Lee S-W (2019) Classification of breast cancer histology images using incremental boosting convolution networks. Inf Sci 482:123–138

    Article  Google Scholar 

  17. George K, Faziludeen S, Sankaran P, Paul JK (2019) Deep learned nucleus features for breast cancer histopathological image analysis based on belief theoretical classifier fusion. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, pp 344–349

  18. Sheikh TS, Lee Y, Cho M (2020) Histopathological classification of breast cancer images using a multi-scale input and multi-feature network. Cancers 12(8):2031

    Article  Google Scholar 

  19. Saxena S, Shukla S, Gyanchandani M (2021) Breast cancer histopathology image classification using kernelized weighted extreme learning machine. Int J Imaging Syst Technol 31(1):168–179

    Article  Google Scholar 

  20. Ataky STM, de Matos J, Britto AdS, Oliveira LE, Koerich AL (2020) Data augmentation for histopathological images based on gaussian-laplacian pyramid blending. In: 2020 international joint conference on neural networks (IJCNN), IEEE, pp 1–8

  21. Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NF, Mei C, Lu J, Zhang J et al (2021) Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro-oncology 23(1):44–52

    Article  Google Scholar 

  22. Mehmood S, Ghazal TM, Khan MA, Zubair M, Naseem MT, Faiz T, Ahmad M (2022) Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing. IEEE Access 10:25657–25668

    Article  Google Scholar 

  23. Fan J, Lee J, Lee Y (2021) A transfer learning architecture based on a support vector machine for histopathology image classification. Appl Sci 11(14):6380

    Article  Google Scholar 

  24. Zhang J, Xia Y, Xie Y, Fulham M, Feng DD (2017) Classification of medical images in the biomedical literature by jointly using deep and handcrafted visual features. IEEE J Biomed Health Inf 22(5):1521–1530

    Article  Google Scholar 

  25. Sharafudeen M et al (2022) Detecting skin lesions fusing handcrafted features in image network ensembles. Multimedia Tools Appl 1–21

  26. Vicentini GE, Martins HA, Fracaro L, Souza SRGD, Zanoni KPS, Silva TNX, Blegniski FP, Guarnier FA, Zanoni JN (2017) Does l-glutamine-supplemented diet extenuate no-mediated damage on myenteric plexus of walker 256 tumor-bearing rats? Food Res Int 101:24–34

    Article  Google Scholar 

  27. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall Inc., Hoboken

    Google Scholar 

  28. Nanni L, Lumini A, Brahnam S (2010) Local binary pattern variants as texture descriptors for medical image analysis. Artif Intell Med 49:117–25

    Article  MATH  Google Scholar 

  29. Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YMG (2020) COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed 194:105532

    Article  Google Scholar 

  30. Felipe GZ, Costa YMG, Helal LG (2017) Acoustic scene classification using spectrograms. In: Proceedings of the international conference of the Chilean computer science society, p 7

  31. Nanni L, Costa YMG, Lucio DR, Silla Jr CN, Brahnam S (2016) Combining visual and acoustic features for bird species classification. In: Proceedings of the IEEE international conference on tools with artificial intelligence, pp 396–401

  32. Felipe GZ, Aguiar RL, Costa YMG, Silla Jr CN, Brahnam S, Nanni L, McMurtrey S (2019) Identification of infants’ cry motivation using spectrograms. In: Proceedings of the international conference on systems, signals and image processing, pp 181–186

  33. Freitas GK, Costa YMG, Aguiar RL (2016) Using spectrogram to detect north Atlantic right whale calls from audio recordings. In: Proceedings of the international conference of the Chilean computer science society, pp 1–6

  34. Costa YMG, Oliveira LES, Koerich AL, Gouyon F, Martins JG (2012) Music genre classification using LBP textural features. Signal Process 92(11):2723–2737

    Article  Google Scholar 

  35. Nanni L, Costa YMG, Brahnam S (2014) Set of texture descriptors for music genre classification. In: Proceedings of the international conference on computer graphics. Visualization and computer vision, pp 145–152

  36. Martins JG, Costa YMG, Bertolini D, Oliveira LES (2011) Uso de descritores de textura extraıdos de glcm para o reconhecimento de padroes em diferentes domınios de aplicaçao. In: Proceedings of the Conferencia Latinoamericana de Informática, pp 637–652

  37. Paulino MAD, Britto Junior AS, Svaigen AR, Aylon LBR, Oliveira LES, Costa YMG (2018) A Brazilian speech database. In: Proceedings of the IEEE international conference on tools with artificial intelligence

  38. Montalvo A, Costa YM, Calvo JR (2015) Language identification using spectrogram texture. In: Iberoamerican congress on pattern recognition, Springer, pp 543–550

  39. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. In: IEEE Transactions on pattern analysis and machine intelligence, pp 1798–1828

  40. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Ann Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  41. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  42. Chen J, Kellokumpu V, Zhao G, Pietikäinen M (2013) RLBP: Robust local binary pattern. In: Proceedings of the British machine vision conference

  43. Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. In: Image and signal processing, pp 236–243

  44. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. Computing Research Repository

  45. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. Computing Research Repository

  46. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the conference on computer vision and pattern recognition, pp 248–255

  47. Nanni L, Ghidoni S, Brahnam S (2017) Handcrafted vs non-handcrafted features for computer vision classification. Pattern Recognit 71:158–172. https://doi.org/10.1016/j.patcog.2017.05.025

    Article  Google Scholar 

  48. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462

    Article  Google Scholar 

  49. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  50. Russell SJ, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Pearson Education, London

    MATH  Google Scholar 

  51. Kittler J, Hatef M, Duin RP, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  52. Chollet F, et al (2015) Keras. https://keras.io

  53. Chang C, Lin C (2013) LIBSVM: a library for support vector machines. National Taiwan University, Taipei

    Google Scholar 

  54. Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144

  55. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems 30. Curran Associates, New York, pp 4765–4774

    Google Scholar 

Download references

Acknowledgements

We thank the support of the universities involved in the development of this research.

Funding

This research has been partly supported by the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.Z.F., J.N.Z. and Y.M.G.C.; methodology, G.Z.F., R.M.P. and Y.M.G.C.; validation, G.Z.F., L.O.T., L.F.M.P., L.N., S.R.G.S, J.N.Z., R.M.P. and Y.M.G.C.; investigation, G.Z.F., L.O.T. and L.N.; writing—original draft preparation, G.Z.F.; writing—review and editing, R.M.P., L.O.T., L.N., S.R.G.S, J.N.Z. G.D.C.C., and Y.M.G.C.; supervision, R.M.P. and Y.M.G.C.; project administration, Y.M.G.C.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gustavo Z. Felipe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Ethics approval

Ethical review and approval were waived for this study, due to the use of rats during the image acquisition phase of the dataset construction. The study follows the ethical principles under the terms set out in the Brazilian federal Law 11,794 (October 2008) and the Decree 66,689 (July 2009), established by the Brazilian Society of Science on Laboratory Animals (SBCAL). All the proceedings were submitted and approved by the Standing Committee on Ethics in Animals Experimentation of the State University of Maringá under the Protocol numbers 062/2012 (TW), 4462180216 (AIA) and 073/2014 (D).

Consent to participate

Not applicable

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Code availability

The developed source codes will be made available in due course on GitHub at https://github.com/gustavozf/PRZ_3M. All of the third-party source codes, such as texture descriptors, may be found described in their original papers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felipe, G.Z., Teixeira, L.O., Pereira, R.M. et al. Cancer Identification in Enteric Nervous System Preclinical Images Using Handcrafted and Automatic Learned Features. Neural Process Lett 55, 5811–5832 (2023). https://doi.org/10.1007/s11063-022-11114-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-11114-y

Keywords

Navigation