Skip to main content
Log in

Using Hamiltonian Neural Networks to Model Two Coupled Duffing Oscillators

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this short note, the performance of two kinds of physics-guided computing schemes, namely the Hamiltonian Neural Network and the Port-Hamiltonian Neural Network, are discussed through the predicted dynamics of two coupled Duffing oscillators. First, we propose a new error bound which holds for both types of networks. Then, we numerically investigate some alternative activation functions in terms of prediction accuracy. The numerical results show the potential of the approaches when compared to the standard neural networks in the transient regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Strogatz SH (2000) Nonlinear dynamics and chaos: with applications to physics, biology. Westview Press, Chemistry and Engineering

    Google Scholar 

  2. Awrejcewicz J (1991) Bifurcation and chaos in coupled oscillators. World Scientific, Singapore

    Book  MATH  Google Scholar 

  3. Deco G, Kringelbach ML, Jirsa VK, Ritter P (2017) The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci Rep 7:3095

    Article  Google Scholar 

  4. Qing YM, Ren Y, Lei D, Ma HF, Cui TJ (2022) Strong coupling in two-dimensional materials-based nanostructures: a review. J Opt 24(2):024009

    Article  Google Scholar 

  5. Ceron S, Kimmel MA, Nilles A, Petersen K (2021) Soft robotic oscillators with strain-based coordination. IEEE Robot Autom Lett 6(4):7557–7563

    Article  Google Scholar 

  6. Ikeda Y, Aoyama H, Fujiwara Y, Iyetomi H, Ogimoto K, Souma W, Yoshikawa H (2012) Coupled oscillator model of the business cycle with fluctuating goods markets. Progress Theor Phys Suppl 194:111–121

    Article  Google Scholar 

  7. Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai Y-C, Morozov A, Petrivskii S, Scranton K, Zeeman ML (2018) Transient phenomena in ecology. Science 361:6406

    Article  Google Scholar 

  8. Simonsen I, Buzna L, Peters K, Bornholdt S, Helbing D (2008) Transient dynamics increasing network vulnerability to cascading failures. Phys Rev Lett 100:218701

    Article  Google Scholar 

  9. Fan H, Wang L, Du Y, Wang Y, Xiao J, Wang X (2022) Learning the dynamics of coupled oscillators from transients. Phys Rev Res 4(1):013137

    Article  Google Scholar 

  10. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Net 4(2):251–257

    Article  MathSciNet  Google Scholar 

  11. Sam Greydanus JY, Dzamba M, Yosinski J (2019) Hamiltonian neural networks. Adv Neural Inform Proc Syst 32:1110–1118

    Google Scholar 

  12. Desai SA, Mattheakis M, Sondak D, Protopapas P, Roberts SJ (2021) Port-hamiltonian neural networks for learning explicit time-dependent dynamical systems. Phys Rev E 104:034312

    Article  Google Scholar 

  13. Choudhary A, Lindner JF, Holliday EG, Miller ST, Sinha S, Ditto WL (2021) Forecasting hamiltonian dynamics without canonical coordinates. Nonlin Dyn 103:1553–1562

    Article  MATH  Google Scholar 

  14. Li S, Yang Y (2021) A recurrent neural network framework with an adaptive training strategy for long-time predictive modeling of nonlinear dynamical systems. J Sound Vibr 506:116167

    Article  Google Scholar 

  15. Olmez M, Guzeli C (2015) Exploiting chaos in learning system identification for nonlinear state space models. Neural Process Lett 41:29–41

    Article  Google Scholar 

  16. Ziyin L, Hartwig T, Ueda M (2020) Neural networks fail to learn periodic functions and how to fix it. Adv Neural Inform Proc Syst 33:1583–1594

    Google Scholar 

  17. Mattheakis M, Sondak D, Dogra AS, Protopapas P (2022) Hamiltonian neural networks for solving equations of motion. Phys Rev E 105:065305

    Article  MathSciNet  Google Scholar 

  18. Tomasiello S, Loia V, Khaliq A (2021) A granular recurrent neural network for multiple time series prediction. Neural Comput Appl 33:10293–10310

    Article  Google Scholar 

  19. Colace F, Loia V, Tomasiello S (2019) Revising recurrent neural networks from a granular perspective. Appl Soft Comput 82:105535

    Article  Google Scholar 

  20. Choudhary A, Lindner JF, Holliday EG, Miller ST, Sinha S, Ditto WL (2020) Physics-enhanced neural networks learn order and chaos. Phys Rev E 101:062207

    Article  Google Scholar 

  21. Han C-D, Glaz B, Haile M, Lai Y-C (2021) Adaptable Hamiltonian neural networks. Phys Rev Res 3:023156

    Article  Google Scholar 

  22. Zhang H, Fan H, Wang L, Wang X (2021) Learning Hamiltonian dynamics with reservoir computing. Phys Rev E 104:024205

    Article  MathSciNet  Google Scholar 

  23. Desai SA, Mattheakis M, Roberts SJ (2021) Variational integrator graph networks for learning energy-conserving dynamical systems. Phys Rev E 104:035310

    Article  MathSciNet  Google Scholar 

  24. Md RE, Ul Shougat X, Li T, Mollik E. Perkins (2021) An information theoretic study of a duffing oscillator array reservoir computer. J Comput Nonlinear Dyn 16(8):081004

    Article  Google Scholar 

  25. Goldstein H, Poole C, Safko J (2002) Classical mechanics, 3rd edn. Pearson Addison Wesley, USA

    MATH  Google Scholar 

  26. Rajasekar S, Raj SP (1996) The Painlevé property, integrability and chaotic behaviour of a two-coupled Duffing oscillators. Pranama J Phys 47(3):183–198

    Article  Google Scholar 

  27. Hong YP, Pan CT (1992) A lower bound for the smallest singular value. Linear Algebra Appl 172:27–32

    Article  MathSciNet  MATH  Google Scholar 

  28. Tomasiello S, Pedrycz W, Loia V (2022) Contemporary fuzzy logic: a perspective of fuzzy logic with scilab. Springer, Cham

    Book  MATH  Google Scholar 

  29. Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272

    Article  Google Scholar 

  30. Loia V, Tomasiello S, Vaccaro A, Gao J (2020) Using local learning with fuzzy transform: application to short term forecasting problems. Fuz Opt Decis Mak 19:13–32

    Article  MathSciNet  MATH  Google Scholar 

  31. Hastings A (2001) Transient dynamics and persistence of ecological systems. Ecol Lett 4(3):215

    Article  Google Scholar 

  32. Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608

    Article  Google Scholar 

Download references

Acknowledgements

Dr Tomasiello acknowledges funding from the European Social Fund via the IT Academy program and from the Estonian Research Council grant PRG1604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Tomasiello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pribõtkin, G., Tomasiello, S. Using Hamiltonian Neural Networks to Model Two Coupled Duffing Oscillators. Neural Process Lett 55, 8163–8180 (2023). https://doi.org/10.1007/s11063-023-11306-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11306-0

Keywords

Navigation