Skip to main content
Log in

Stability and Bifurcation Behavior of a Neuron System with Hyper-Strong Kernel

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

At present, there are few studies on the delayed kernel function of hyper-strong kernel. This paper attempts to analyze the stability and bifurcation of neural networks with distributed delayed hyper-strong kernels. Firstly, considering the average delay as a bifurcation parameter, the study discusses the characteristic equations of delayed kernels with weak kernel, strong kernel and hyper-strong kernel to provide sufficient conditions for the stability and generation of Hopf bifurcation. Secondly, it applies the normal theory and the center manifold theory to derive the formulas for determining the stability and direction of the bifurcating periodic solution. Finally, it verifies the correctness of the calculation results by numerical simulation with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xia Y, Wang J (2004) A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw 15:318–328

    Google Scholar 

  2. Wu Y, Feng J (2018) Development and application of artificial neural network. Wirel Pers Commun 102:1645–1656

    Google Scholar 

  3. Seow M, Asari V (2010) Learning as a nonlinear line of attraction in a recurrent neural network. Neural Comput Appl 19:337–342

    Google Scholar 

  4. Aleksandra W (2019) Regularization theory in the study of generalization ability of a biological neural network model. Adv Comput Math 45:1793–1805

    MathSciNet  Google Scholar 

  5. Tong S, Wang T, Li Y (2014) Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans Cybern 44:910–921

    Google Scholar 

  6. Dong T, Bai J, Yang L (2018) Bifurcation analysis of delayed complex-valued neural network with diffusions. Neural Process Lett 8:1–15

    Google Scholar 

  7. Guo W, Yang J (2017) Hopf bifurcation control of hydro-turbine governing system with sloping ceiling tailrace tunnel using nonlinear state feedback. Chaos Solitons Fractals 104:426–434

    MathSciNet  Google Scholar 

  8. Tian X, Xu R (2017) Stability and hopf bifurcation of time fractional cohen-grossberg neural networks with diffusion and time delays in leakage terms. Neural Process Lett 45:593–614

    Google Scholar 

  9. Tabekoueng Z, Laura C (2020) Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3D Generalized hopfield neural network. Neural Process Lett 52:267–289

    Google Scholar 

  10. Shen H, Zhu Y, Zhang L (2016) Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28:1–13

    MathSciNet  Google Scholar 

  11. Cheng Z, Li D, Cao J (2016) Stability and Hopf bifurcation of a three-layer neural network model with delays. Neurocomputing 175:355–370

    Google Scholar 

  12. Yu W, Cao J, Chen G (2008) Stability and Hopf bifurcation of a general delayed recurrent neural network. IEEE Trans Neural Netw 19:845–854

    Google Scholar 

  13. Gan Q, Liang Y (2012) Synchronization of non-identical unknown chaotic delayed neural networks based on adaptive sliding mode control. Neural Process Lett 35:245–255

    Google Scholar 

  14. Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21

    Google Scholar 

  15. Zhou Y, Xia J, Shen H (2019) Extended dissipative learning of time-delay recurrent neural networks. J Franklin Inst 356:8745–8769

    MathSciNet  Google Scholar 

  16. Jing T, Zhang D, Jing T (2020) Finite-Time synchronization of hybrid-coupled delayed dynamic networks via aperiodically intermittent control. Neural Process Lett 52:291–311

    Google Scholar 

  17. Chen W, Luo S, Lu X (2015) Multistability in a class of stochastic delayed Hopfield neural networks. Neural Netw 68:52–61

    Google Scholar 

  18. Dong T, Gong X, Huang T (2022) Zero-Hopf bifurcation of a memristive synaptic Hopfield neural network with time delay. Neural Netw 149:146–156

    Google Scholar 

  19. Yang H, Yan X (2012) New stability criteria for neural networks with time-varying delays. Appl Math Comput 218:5035–5042

    MathSciNet  Google Scholar 

  20. Gao H, Wang J (2020) Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning. Physica D 412:132614

    MathSciNet  Google Scholar 

  21. Kundu A, Das P, Roy A (2016) Stability, bifurcation and synchronization in a delayed neural network model of n-identical neurons. Math Comput Simul 121:12–33

    MathSciNet  Google Scholar 

  22. Luan X, Chen Q, Liu F (2018) Conversion of SISO processes with multiple time-delays to single time-delay processes. Journal of Process Control 65:84–90

    Google Scholar 

  23. Ma Y, Deng C (2022) Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks. Appl Math Comput 421:126941

    MathSciNet  Google Scholar 

  24. Li W, Li M, Hang J, Qiao J (2020) Design of a self-organizing reciprocal modular neural network for nonlinear system modeling. Neurocomputing 411:327–339

    Google Scholar 

  25. Wang L, Wu J, Wang X (2021) Finite-time stabilization of memristive neural networks with time delays. Neural Process Lett 53:299–318

    Google Scholar 

  26. Wang H, Zou Y, Zhao X (2020) Neural-network-based tracking control for a class of time-delay nonlinear systems with unmodeled dynamics. Neurocomputing 396:179–190

    Google Scholar 

  27. Xing R, Xiao M, Zhang Y, Qiu J (2022) Stability and hopf bifurcation analysis of an (n+m)-neuron double-ring neural network model with multiple time delays. J Syst Sci Complex 35:159–178

    MathSciNet  Google Scholar 

  28. Wang T, Cheng Z, Bu R, Ma R (2019) Stability and Hopf bifurcation analysis of a simplified six-neuron tridiagonal two-layer neural network model with delays. Neurocomputing 332:203–214

    Google Scholar 

  29. Zhang B, Li J, Quan L (2019) Sequence-based prediction of protein-protein interaction sites by simplified long short-term memory network. Neurocomputing 357:86–100

    Google Scholar 

  30. Xu C (2018) Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays. Math Comput Simul 149:69–90

    MathSciNet  Google Scholar 

  31. Alfifi H (2021) Stability and hopf bifurcation analysis for the diffusive delay logistic population model with spatially heterogeneous environment. Appl Math Comput 408:126362

    MathSciNet  Google Scholar 

  32. Yao Y, Xiao M, Cao J, Huang C, Song Q (2019) Stability switches and hopf bifurcation of a neuron system with both leakage and distributed delays. Neural Process Lett 50:341–355

    Google Scholar 

  33. Kaslik E (2022) Stability and bifurcations in fractional-order gene regulatory networks. Appl Math Comput 421:126916

    MathSciNet  Google Scholar 

  34. Samidurai R, Sriraman R, Zhu S (2019) Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays. Neurocomputing 338:262–273

    Google Scholar 

  35. Wang Z, Li L, Li Y, Cheng Z (2018) Stability and hopf bifurcation of a three-neuron network with multiple discrete and distributed delays. Neural Process Lett 48:1481–1502

    Google Scholar 

  36. Wang H, Wei G, Wen S, Huang T (2020) Generalized norm for existence, uniqueness and stability of Hopfield neural networks with discrete and distributed delays. Neural Netw 128:288–293

    Google Scholar 

  37. Dong Z, Zhang X, Wang X (2021) Global exponential stability of discrete-time higher-order Cohen-Grossberg neural networks with time-varying delays, connection weights and impulses. J Franklin Inst 358:5931–5950

    MathSciNet  Google Scholar 

  38. Duan L, Huang L, Cai Z (2014) Existence and stability of periodic solution for mixed time-varying delayed neural networks with discontinuous activations. Neurocomputing 123:255–265

    Google Scholar 

  39. Tu Z, Zhao Y, Ding N, Feng Y, Zhang W (2019) Stability analysis of quaternion-valued neural networks with both discreteand distributed delays. Appl Math Comput 343:342–353

    MathSciNet  Google Scholar 

  40. Ruan D, Huang Z, Guo X (2020) Inequalities and stability of stochastic Hopfield neural networks with discrete and distributed delays. Neurocomputing 407:281–291

    Google Scholar 

  41. Liao X, Chen G (2005) Hopf bifurcation and chaos analysis of Chen’s system with distributed delays. Chaos Solitons Fractals 25:197–220

    MathSciNet  Google Scholar 

  42. Liao X, Li S, Wang K (2003) Hopf bifurcation on a two-neuron system with distributed delays: a frequency domain approach. Nonlinear Dyn 31:299–326

    MathSciNet  Google Scholar 

  43. Liao X, Wang K, Wu Z (2001) Bifurcation analysis on a two-neuron system with distributed delays. Physica D 149:123–141

    MathSciNet  Google Scholar 

  44. Cheng Z, Cao J (2006) Bifurcation and stability analysis of a neural network model with distributed delays. Nonlinear Dyn 48:363–373

    MathSciNet  Google Scholar 

  45. Cheng Z, Wang Y, Cao J (2016) Stability and Hopf bifurcation of a neural network model with distributed delays and strong kernel. Nonlinear Dyn 86:323–335

    MathSciNet  Google Scholar 

  46. Shi S, Xiao M, Cheng Z (2019) Dynamic optimization of neuron systems with leakage delay and distributed delay via hybrid control. Neural Process Lett 50:2493–2514

    Google Scholar 

  47. Hassard B (1981) Theory and applications of Hopf Bifurcation. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the reviewers and editor for his/her helpful comments in improving the presentation and quality of the paper. This work was supported by National Natural Science Foundation of China (Grant Nos. 61374011, 62103215), and Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2020MF080, ZR2020MF065.)

Author information

Authors and Affiliations

Authors

Contributions

X. Li and Z. Cheng wrote the main manuscript text and prepared figures. Z. Cheng, J. Cao and F. E. Alsaadi reviewed the manuscript.

Corresponding author

Correspondence to Zunshui Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Concrete expressions in system (37)

$$\begin{aligned} \left\{ \begin{aligned} f_1=&\,c_{11}^{(2)}[\phi _1^2(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^2(s)ds]+c_{12}^{(2)}[\phi _2^2(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^2(s)ds]\\&\,+c_{13}^{(2)}[\phi _3^2(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^2(s)ds]+c_{11}^{(3)}[\phi _1^3(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^3(s)ds]\\&\,+c_{12}^{(3)}[\phi _2^3(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^3(s)ds]+c_{13}^{(3)}[\phi _3^3(0)-b_1\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^3(s)ds]+\cdot \cdot \cdot ,\\ f_2=&\,c_{21}^{(2)}[\phi _1^2(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^2(s)ds]+c_{22}^{(2)}[\phi _2^2(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^2(s)ds]\\&\,+c_{23}^{(2)}[\phi _3^2(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^2(s)ds]+c_{21}^{(3)}[\phi _1^3(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^3(s)ds]\\&\,+c_{22}^{(3)}[\phi _2^3(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^3(s)ds]+c_{23}^{(3)}[\phi _3^3(0)-b_2\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^3(s)ds]+\cdot \cdot \cdot ,\\ f_3=&\,c_{31}^{(2)}[\phi _1^2(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^2(s)ds]+c_{32}^{(2)}[\phi _2^2(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^2(s)ds]\\&\,+c_{33}^{(2)}[\phi _3^2(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^2(s)ds]+c_{31}^{(3)}[\phi _1^3(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _1^3(s)ds]\\&\,+c_{32}^{(3)}[\phi _2^3(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _2^3(s)ds]+c_{33}^{(3)}[\phi _3^3(0)-b_3\int \limits ^{0}_{-\infty }T_0(-s)\phi _3^3(s)ds]+\cdot \cdot \cdot , \end{aligned} \right. \end{aligned}$$

where \(c^{(u)}_{ij}=\frac{1}{u!}a_{ij}f^{(u)}(0), i,j=1,2,3, u=2,3,\cdot \cdot \cdot \).

Concrete expressions in system (52)

$$\begin{aligned} \left\{ \begin{aligned} K_{11}&=(c_{11}^{(2)}+c^{(2)}_{12}B^2_{1}+c^{(2)}_{13}B^2_{2})\left[ 1-\frac{b_1\alpha }{(\alpha +2\textrm{i}\omega _0)}\right] ,\\ K_{12}&=2(c_{11}^{(2)}+c^{(2)}_{12}B_{1}\overline{B}_{1}+c^{(2)}_{13}B_{2}\overline{B}_{2})(1-b_1),\\ K_{13}&=(c_{11}^{(2)}+c^{(2)}_{12}\overline{B}^2_{1}+c^{(2)}_{13}\overline{B}^2_{2})\left[ 1-\frac{b_1\alpha }{(\alpha -2\textrm{i}\omega _0)}\right] ,\\ K_{14}&=c_{11}^{(2)}(W_{20}^{(1)}(0)+2W_{11}^{(1)}(0))\\&\quad +c_{12}^{(2)}(W^{(2)}_{20}(0)\overline{B}_{1}+2W_{11}^{(2)}(0)B_{1})+c_{13}^{(2)}(W^{(3)}_{20}(0)\overline{B}_{2}+2W_{11}^{(3)}(0)B_{2})-c_{11}^{(2)}b_1\\&\quad \int \limits _{-\infty }^0F(-s)(W_{20}^{(1)}(s)e^{-\textrm{i}\omega _0s}+2W_{11}^{(1)}(s)e^{\textrm{i}\omega _0s})ds-c_{12}^{(2)}b_1\int \limits _{-\infty }^0F(-s)(\overline{B}_1W_{20}^{(2)}(s)\\&e^{-\textrm{i}\omega _0s}+2B_{1}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds-c_{13}^{(2)}b_1\int \limits _{-\infty }^0F(-s)(\overline{B}_2W_{20}^{(2)}(s)e^{-\textrm{i}\omega _0s}+2B_{2}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds\\&+3(c_{11}^{(3)}+c^{(3)}_{12}B_{1}^2\overline{B}_1+c^{(3)}_{23}B_{2}^2\overline{B}_2)[1-\frac{b_1\alpha }{(\alpha +\textrm{i}\omega _0)}]\\ K_{21}&=(c_{21}^{(2)}+c^{(2)}_{22}B^2_{1}+c^{(2)}_{23}B^2_{2})\left[ 1-\frac{b_2\alpha }{(\alpha +2\textrm{i}\omega _0)}\right] ,\\ K_{22}&=2(c_{21}^{(2)}+c^{(2)}_{22}B_{1}\overline{B}_{1}+c^{(2)}_{23}B_{2}\overline{B}_{2})(1-b_2),\\ K_{23}&=(c_{21}^{(2)}+c^{(2)}_{22}\overline{B}^2_{1}+c^{(2)}_{23}\overline{B}^2_{2})\left[ 1-\frac{b_2\alpha }{(\alpha -2\textrm{i}\omega _0)}\right] ,\\ K_{24}&=c_{21}^{(2)}(W_{20}^{(1)}(0)+2W_{11}^{(1)}(0))+c_{22}^{(2)}(W^{(2)}_{20}(0)\overline{B}_{1}+2W_{11}^{(2)}(0)B_{1})\\&\quad +c_{23}^{(2)}(W^{(3)}_{20}(0)\overline{B}_{2}+2W_{11}^{(3)}(0)B_{2})-c_{21}^{(2)}b_2\int \limits _{-\infty }^0F(-s)(W_{20}^{(1)}(s)e^{-\textrm{i}\omega _0s}+2W_{11}^{(1)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad -c_{22}^{(2)}b_2\int \limits _{-\infty }^0F(-s)(\overline{B}_1W_{20}^{(2)}(s)e^{-\textrm{i}\omega _0s}+2B_{1}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad -c_{23}^{(2)}b_2\int \limits _{-\infty }^0F(-s)(\overline{B}_2W_{20}^{(2)}(s)e^{-\textrm{i}\omega _0s}+2B_{2}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad +3(c_{21}^{(3)}+c^{(3)}_{22}B_{1}^2\overline{B}_1+c^{(3)}_{23}B_{2}^2\overline{B}_2)\left[ 1-\frac{b_2\alpha }{(\alpha +\textrm{i}\omega _0)}\right] \\ K_{31}&=(c_{31}^{(2)}+c^{(2)}_{32}B^2_{1}+c^{(2)}_{33}B^2_{2})[1-\frac{b_3\alpha }{(\alpha +2\textrm{i}\omega _0)}],\\ K_{32}&=2(c_{31}^{(2)}+c^{(2)}_{32}B_{1}\overline{B}_{1}+c^{(2)}_{33}B_{2}\overline{B}_{2})(1-b_3),\\ K_{33}&=(c_{31}^{(2)}+c^{(2)}_{32}\overline{B}^2_{1}+c^{(2)}_{33}\overline{B}^2_{2})\left[ 1-\frac{b_3\alpha }{(\alpha -2\textrm{i}\omega _0)}\right] ,\\ K_{34}&=c_{31}^{(2)}(W_{20}^{(1)}(0)+2W_{11}^{(1)}(0))+c_{32}^{(2)}(W^{(2)}_{20}(0)\overline{B}_{1}+2W_{11}^{(2)}(0)B_{1})\\&\quad +c_{33}^{(2)}(W^{(3)}_{20}(0)\overline{B}_{2}+2W_{31}^{(3)}(0)B_{2})-c_{31}^{(2)}b_3\int \limits _{-\infty }^0F(-s)(W_{20}^{(1)}(s)e^{-\textrm{i}\omega _0s}+2W_{11}^{(1)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad -c_{32}^{(2)}b_3\int \limits _{-\infty }^0F(-s)(\overline{B}_1W_{20}^{(2)}(s)e^{-\textrm{i}\omega _0s}+2B_{1}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad -c_{33}^{(2)}b_3\int \limits _{-\infty }^0F(-s)(\overline{B}_2W_{20}^{(2)}(s)e^{-\textrm{i}\omega _0s}+2B_{2}W_{11}^{(2)}(s)e^{\textrm{i}\omega _0s})ds\\&\quad +3(c_{31}^{(3)}+c^{(3)}_{32}B_{1}^2\overline{B}_1+c^{(3)}_{33}B_{2}^2\overline{B}_2)\left[ 1-\frac{b_3\alpha }{(\alpha +\textrm{i}\omega _0)}\right] \\ \end{aligned} \right. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cheng, Z., Cao, J. et al. Stability and Bifurcation Behavior of a Neuron System with Hyper-Strong Kernel. Neural Process Lett 55, 12143–12167 (2023). https://doi.org/10.1007/s11063-023-11413-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11413-y

Keywords

Navigation