Abstract
Classical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated to a two-variable moment functional satisfying a matrix analogue of the Pearson differential equation. Furthermore, we characterize classical orthogonal polynomials in two variables as the polynomial solutions of a matrix second order partial differential equation.
Similar content being viewed by others
References
S. Bochner, Über Sturm–Liouvillesche Polynomsysteme, Math. Zeit. 29 (1929) 730–736.
T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, London, 1978).
C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, Vol. 81 (Cambridge Univ. Press, Cambridge, 2001).
R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge Univ. Presss, Cambridge, 1991).
Y.J. Kim, K.H. Kwon and J.K. Lee, Orthogonal polynomials in two variables and second-order partial differential equations, J. Comput. Appl. Math. 82 (1997) 239–260.
Y.J. Kim, K.H. Kwon and J.K. Lee, Partial differential equations having orthogonal polynomial solutions, J. Comput. Appl. Math. 99 (1998) 239–253.
Y.J. Kim, K.H. Kwon and J.K. Lee, Centrally symmetric orthogonal polynomials and second order partial differential equations, Methods Appl. Anal. 7(1) (2000) 57–64.
M.A. Kowalski, The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13 (1982) 309–315.
M.A. Kowalski, Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (1982) 316–323.
H.L. Krall and I.M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. Ser. 4 76 (1967) 325–376.
L.L. Littlejohn, Orthogonal polynomial solutions to ordinary and partial differential equations, in: Orthogonal Polynomials and Their Applications. Proceedings Segovia, Spain (1986), Lecture Notes in Mathematics, Vol. 1329 (Springer, Berlin, 1988) pp. 98–124.
F. Marcellán, A. Branquinho and J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (1994) 283–303.
P. Maroni, Une théorie algébrique des polynômes orthogonaux, IMACS Ann. Comput. Appl. Math. 9 (1991) 95–130.
P.K. Suetin, Orthogonal Polynomials in Two Variables (Gordon and Breach, Amsterdam, 1999).
Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993) 783–794.
Author information
Authors and Affiliations
Corresponding author
Additional information
AMS subject classification
42C05, 33C50
Partially supported by Ministerio de Ciencia y Tecnología (MCYT) of Spain and by the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02, Junta de Andalucía, G.I. FQM 0229 and INTAS Project 2000-272.
Rights and permissions
About this article
Cite this article
Fernández, L., Pérez, T.E. & Piñar, M.A. Classical orthogonal polynomials in two variables: a matrix approach. Numer Algor 39, 131–142 (2005). https://doi.org/10.1007/s11075-004-3625-x
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11075-004-3625-x