Skip to main content
Log in

PDE-constrained control using Femlab – Control of the Navier–Stokes equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We show how the software Femlab can be used to solve PDE-constrained optimal control problems. We give a general formulation for such kind of problems and derive the adjoint equation and optimality system. Then these preliminaries are specified for the stationary Navier–Stokes equations with distributed and boundary control. The main steps to define and solve a PDE with Femlab are described. We describe how the adjoint system can be implemented, and how the optimality system can be used by Femlab’s built-in functions. Special crucial topics concerning efficiency are discussed. Examples with distributed and boundary control for different type of cost functionals in 2 and 3 space dimensions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Casas, E.: Some optimal control problems associated to the stationary Navier–Stokes equation. In: Diaz, J.-I., et al. (ed.) Mathematics, Climate, and Environment, Res. Notes Appl. Math., vol. 27, pp. 213–220. Masson, Paris (1993)

    Google Scholar 

  2. Burkard, J., Peterson, J.: Control of steady incompressible 2D channel flow. In: Gunzburger, M.D. (ed.) IMA Vol. Appl. Math., vol. 68, pp. 111–126. Springer, Berlin Heidelberg New York (1995)

  3. Comsol Inc. http://www.femlab.com

  4. de los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal. 62, 1289–1316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desai, M., Ito, K.: Optimal controls of Navier–Stokes equations. SIAM J. Control Optim. 32(5), 1428–1446 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics 5, New York (1986)

  7. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003)

    Google Scholar 

  8. Gunzburger, M.D., Hou, L., Svobodny, T.P.: Analysis and finite element approximation of optimal control problems for the stationary Navier–Stokes equations with distributed and Neumann controls. Math. Comput. 57(195), 123–151 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heinkenschloss, M.: Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier–Stokes flow. In: Hager, W.H., Pardalos, P. (eds.) Optimal Control: Theory, Algorithms, and Applications, pp. 178–203. Kluwer, Dordrecht (1998)

    Google Scholar 

  10. Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier–Stokes system. Z. Angew. Math. Mech. 84(3), 171–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hou, L.S., Ravindran, S.S.: Numerical approximation of optimal flow control problems by a penalty method: Error estimates and numerical results. SIAM J. Sci. Comput. 20, 1753–1777 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin Heidelberg New York (1971)

    MATH  Google Scholar 

  13. Màlek, J., Roubićek, T.: Optimization of steady state flows for incompressible viscous fluids. In: Sequiera, A., Beirao da Vega, H., Videman, J.H. (eds.) Nonlinear Applied Analysis, pp. 355–372. Plenum, New York (1999)

    Google Scholar 

  14. The Mathworks, Inc. http://www.matlab.com

  15. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  16. Roubićek, T., Tröltzsch, F.: Lipschitz stability of optimal controls for the steady state Navier–Stokes equations. Control and Cybernetics 32, 683–705 (2003)

    Google Scholar 

  17. Slawig, T.: A formula for the derivative with respect to domain variations in Navier–Stokes flow based on an embedding domain method. SIAM J. Control Optim. 42(2), 495–512 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Slawig.

Additional information

Communicated by Claude Brezinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slawig, T. PDE-constrained control using Femlab – Control of the Navier–Stokes equations. Numer Algor 42, 107–126 (2006). https://doi.org/10.1007/s11075-006-9026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9026-6

Keywords

AMS subject classification

Navigation