Skip to main content
Log in

Computing curve intersection by means of simultaneous iterations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new algorithm is proposed for computing the intersection of two plane curves given in rational parametric form. It relies on the Ehrlich–Aberth iteration complemented with some computational tools like the properties of Sylvester and Bézout matrices, a stopping criterion based on the concept of pseudo-zero, an inclusion result and the choice of initial approximations based on the Newton polygon. The algorithm is implemented as a Fortran 95 module. From the numerical experiments performed with a wide set of test problems it shows a better robustness and stability with respect to the Manocha–Demmel approach based on eigenvalue computation. In fact, the algorithm provides better approximations in terms of the relative error and performs successfully in many critical cases where the eigenvalue computation fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comput. 27(122), 339–344 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bini, D.: Numerical computation of polynomial zeros by means of Aberth’s method. Numer. Algor. 13, 179–200 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algor. 23, 127–173 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bini, D.A., Gemignani, L.: Bernstein–Bezoutian matrices. Theor. Comp. Sci. 315, 319–333 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bini, D.A., Gemignani, L., Tisseur, F.: The Ehrlich–Aberth method for the nonsymmetric tridiagonal eigenvalue problem. SIAM J. Matrix Anal. Appl. 1, 153–175 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bini, D., Pan, V.: Polynomial and Matrix Computations, Fundamental Algorithms, vol 1. Birkhäuser, Boston, Massachusetts (1994)

    MATH  Google Scholar 

  7. Casciola, G., Fabbri, F., Montefusco, L.B.: An application of fast factorization algorithms in computer aided geometric design. Linear Algebra Appl. 366, 121–138 (2003)

    Article  MathSciNet  Google Scholar 

  8. Delvaux, S., Marco, A., Martínez, J.J., Van Barel, M.: Fast computation of determinants of Bézout matrices and application to curve implicitization, Report 434, Katholieke Universiteit Leuven, Department of Computer Science, July (2005)

  9. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64(212), 1557–1576 (1995)

    Article  MathSciNet  Google Scholar 

  10. Goldman, R.N., Sederberg, T.W., Anderson, D.C.: Vector elimination: a technique for the implicitization, inversion and intersection of planar parametric rational polynomial curves. Comput. Aided Geom. Des. 1, 327–356 (1984)

    Article  Google Scholar 

  11. Guggenheimer, H.: Initial approximations in Durand–Kerner’s root finding method. BIT 26, 537–539 (1986)

    Article  Google Scholar 

  12. Henrici, P.: Applied and Computational Complex Analysis, vol 1. Wiley, New York (1974)

    MATH  Google Scholar 

  13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia, Pennsylvania (2002)

    MATH  Google Scholar 

  14. Hoffmann, C.M.: Geometric and Solid Modeling. An Introduction. Morgan Kaufmann, San Mateo, California (1989)

    Google Scholar 

  15. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley, Massachusetts (1993)

    MATH  Google Scholar 

  16. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, New York (1985)

    MATH  Google Scholar 

  17. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves I: simple intersections. ACM Trans. Graph. 13, 73–100 (1994)

    Article  Google Scholar 

  18. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves II: multiple intersections. Graph. Models Image Process. 57(2), 81–100 (1995)

    Article  Google Scholar 

  19. Marco, A., Martínez, J.J.: Using polynomial interpolation for implicitizing algebraic curves. Comput. Aided Geom. Des. 18, 309–319 (2001)

    Article  Google Scholar 

  20. Mosier, R.G.: Root neighborhoods of a polynomial. Math. Comput. 47, 265–273 (1986)

    Article  MathSciNet  Google Scholar 

  21. Patrikalakis, N.M., Maekawa, T.: Chapter 25: Intersection problems. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam, The Netherlands (2002)

    Google Scholar 

  22. Sederberg, T.W.: Improperly parametrized rational curves. Comput. Aided Geom. Des. 3, 67–75 (1986)

    Article  Google Scholar 

  23. Sederberg, T.W., Zheng, J.: Chapter 15: Algebraic methods for computer aided geometric design. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam, The Netherlands (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario A. Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, D.A., Marco, A. Computing curve intersection by means of simultaneous iterations. Numer Algor 43, 151–175 (2006). https://doi.org/10.1007/s11075-006-9048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9048-0

Keywords

Navigation