Skip to main content
Log in

Modified nodal cubic spline collocation for biharmonic equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We formulate a modified nodal cubic spline collocation scheme for the solution of the biharmonic Dirichlet problem on the unit square. We prove existence and uniqueness of a solution of the scheme and show how the scheme can be solved on an N × N uniform partition of the square at a cost O(N 2 log2 N + mN 2) using fast Fourier transforms and m iterations of the preconditioned conjugate gradient method. We demonstrate numerically that m proportional to log2 N guarantees the desired convergence rates. Numerical results indicate the fourth order accuracy of the approximations in the global maximum norm and the fourth order accuracy of the approximations to the first order partial derivatives at the partition nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abushama, A., Bialecki, B.: Modified Nodal Cubic Spline Collocation for Poisson’s equation (submitted). http://www.mines.edu/fs_home/bbialeck/paper.pdf

  2. Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differential Eq. 13, 375–391 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atlas, I., Dym, J., Gupta, M.M., Manohar, R.P.: Multigrid solution of automatically generated high-order discretization for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bjørstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: de Boor, C. (ed.), Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic, New York (1974)

    Google Scholar 

  7. Ehrlich, L.W.: Solving the biharmonic equation as coupled finite difference equation. SIAM J. Numer Anal. 8, 278–287 (1971)

    Article  MathSciNet  Google Scholar 

  8. Hackbusch, W.: Elliptic Differential Equations, Theory and Numerical Treatment. Springer, Berlin Heidelberg New York (1992)

    MATH  Google Scholar 

  9. Knudson, D.B.: A piecewise Hermite bicubic finite element Galerkin method for the biharmonic Dirichlet problem. Ph.D. thesis, Colorado School of Mines, Golden, CO (1997)

  10. Meleshko, V.V.: Biharmonic problem in a rectangle. Appl. Sci. Res. 58, 217–249 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Peisker, P.: On the numerical solution of the first biharmonic equation. Model. Math. Anal. Numer. 22, 655–676 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Prenter, P.M.: Splines and Variational Methods. Wiley, New York (1975)

    MATH  Google Scholar 

  13. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia, PA (1992)

    MATH  Google Scholar 

  14. Zhang, X.: Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 15, 621–644 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bialecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abushama, A.A., Bialecki, B. Modified nodal cubic spline collocation for biharmonic equations. Numer Algor 43, 331–353 (2006). https://doi.org/10.1007/s11075-007-9064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9064-8

Keywords

Mathematics Subject Classifications (2000)